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Abstract

This paper deals with the solution of a binary classification problem by acting on the combined evidence
of several early vision modules. Each module provides an opinion on the identity of an individual image
element based on a specific area of expertise, such as texture, motion, depth etc. The problems involved
in reaching a consensus of opinion are discussed, and the effectiveness of using a trained Multi-Layer
Perceptron as a tool for data fusion is examined. Some preliminary results are reported. The original
version of the document has been extended with new Appendices to cover recent developments in the
field of pattern recognition and machine learning. We hope to show with this additional material that
this approach to solving the data fusion problem is just as valid now as when we first suggested it, and
does not have the failings of more recent and quite widespread approaches.
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Introduction

This paper describes the findings of a preliminary investigation into combining evidence generated by several vision
modules for the solution of a binary classification problem. More specifically, there is a requirement to combine
evidence based on texture (Booth and Mayhew, 1989 & 1990a) and stereo disparity (Booth and Mayhew, 1990b)
for segmenting a sequence of binocular stereo images into road and non-road classes. Problems of this type are
common in computer vision when there is a desire to recover a three dimensional representation of a scene from
its projection onto a two dimensional image plane. Numerous types of vision module have been devised for in-
terpreting noise corrupted features such as shadows, stereo disparities, texture, and optical flow. However, given
only the characteristics of the imaging device and the imagery itself, each problem is ill-posed. As a result, early
vision modules constrain the possible solutions by incorporating prior knowledge. However, since this may vary
for different modules, the problem arises of how to combine their results in a coherent manner (Appendix A). The
choice of fusion mechanism requires consideration of the following issues :

• Expert Reliability

The reliability of experts may differ widely. An unreliable expert must be recognised and its opinions given
reduced weighting.

• Correlated Opinions

The opinions of experts may be correlated. In such cases, experts who tend to draw the same conclusions may
dominate the consensus, though the amount of independent information they represent may not be great. Again,
these must be recognised and their opinions weighted accordingly.

• Input Representation

A particular fusion technique may place constraints on the way in which opinions can be expressed. Some ap-
proaches require the posterior probability of a particular event, and the goal is to produce a single probability
distribution which summarises the various estimates. A survey of such techniques is given by Berenstein et al
(1985). In our application, the texture discriminator generates class conditional posterior probabilities. However,
the obstacle detector generates unnormalised probabilities which represent a measure of deviation from the ground
plane. The fusion technique must be able to handle this. In addition, it would be desirable to fuse opinions, or
measures of belief, originating from distributions of a more arbitrary nature.

• Output Representation

A consensus opinion should ideally be in the form of a probability. These are readily converted into class la-
bels, and a set of opinions relating to a local neighbourhood is suitable for input into a probabilistic relaxation
scheme for incorporating contextual knowledge.

Here the Multi-Layer Perceptron (MLP) is proposed as an ideal tool for data fusion. It will be shown to sat-
isfy all of the constraints listed above, and in doing so, demonstrates a general purpose facility that many other
fusion techniques do not possess. In particular the approach contrasts directly with the method of Boosting which
has received much attention since the publication of this document, the possible pitfalls with boosting are covered
in Appendix B.

The properties of the MLP are discussed in the following sections, and its performance compared with those of
standard statistical classifiers.

Multi-Layer Perceptron

We have adopted the standard MLP network architecture (Rumelhart, 1986). Processing units are arranged in
layers - an input layer, a number of hidden layers (usually one or two) and an output layer. There is full connec-
tivity between adjacent layers and no connectivity between non-adjacent layers.

Each processing unit (i.e. excluding input nodes) performs a weighted summation of its inputs, one of which,
the bias, can be considered as a weight from a dummy unit whose output is always one. A non-linear function is
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then applied to the total summation. More formally, let

yi denote the output from neuron i,
xj denote the input to neuron j,
Wij denote the weight between nodes i and j,

The input to node j is given by

xj =
∑
i

yiWij

and its output by the transfer, or response, function F (xj) which can be linear, but is more normally a sigmoid
function

F (xj) =
1

1 + e−xj
.

The MLP is trained by repeated presentation of a series of input patterns and their corresponding target classes.
The mapping from input to target space is learned by minimising

E =
1

2

n∑
p=1

(y
p
− dp)

2

where y and d represent the observed and target vectors respectively, and n is the number training vectors.

The learning rule is given by

∆Wij(t) = −ǫ
δE

δWij(t)
+ α∆Wij(t− 1)

where t denotes the iteration, ǫ is the learning rate i.e. step size, and α, the momentum, enforces the degree
of similarity between consecutive weight changes. The momentum and learning rate values recommended by
Rumelhart are 0.9, and 0.1 respectively, and these have been adopted in the experiments that follow.

Data Fusion Using an MLP

For a binary classification network, Dodd (1990) proved that, subject to certain conditions, squared error min-
imisation can cause outputs to approximate probabilities (see Appendix C). These conditions are met provided
that the output is an unbiased estimate of the probability (say a 1 from c coding) and that the training data is
a representative sample of the pattern space. The quality of this approximation may sometimes be degraded by
inadequate architecture or convergence to local minima, both of these problems are reduced by the usual techniques
of searching for suitable network architectures and repeated training from random starts. Two questions remain
unanswered. Can an MLP fuse correlated opinions that are given in the form of measures of belief, and if so, are
the results probabilities? We would expect the answer to both of these questions to be “yes”. An MLP should
be capable of learning both the correlations between expert opinions, and the distribution of their respective
expressions of belief. Thus, provided that Dodd’s constraints are satisfied, the outputs should be probabilities
regardless. This leaves aside the issue as to whether or not probabilities or beliefs are a sufficient description of
the results from previous classification systems. This will be addressed in future research (Appendix D).

The MLP’s data fusion capability was tested by simulating a sensor system consisting of three independent chan-
nels. The image from each channel was represented by a different pair of Brodatz (1966) textures bounded in each
case by a diagonal line running from the top left to the bottom right hand corner. Each image was processed in
turn by a texture discrimination program resulting in three grey level encoded posterior probability maps. These
images can be viewed as representing the evidence produced by three vision modules, each of which relates to a
different channel.

The MLP was trained using 240 off-diagonal image blocks, with each training vector consisting of three input
probabilities, one from each channel, together with a target class label (0 or 1). The resulting vectors were used
to train the “general purpose MLP” program developed by Dodd (1988). Details of specific network architectures
will be discussed in the following section.

The trained MLP was tested on the probability images shown in figures 1a,b and c. The types of texture used
in their construction correspond with those used in the training set, though the samples are different. The most
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notable observations are that expert “a” is least reliable, and that the labelling convention adopted by expert “b”
is not agreement with its counterparts. The MLP output is shown in figure 1d. Thresholding at the 0.5 probability
level reveals 9 classification errors in the fused segmentation, while the input channels contain 65, 35, and 31 errors
respectively.

The more general problem of combining correlated measures of belief was tested by training the MLP with linear
combinations of the original probability maps, whose distributions have been subsequently scaled and offset by
differing amounts. The test and the fused images are shown in figure 2. Comparing figures 1d and 2d shows that
when fused, the original and correlated channels produce near identical results.

It could be argued that instead of examining single image blocks, greater coherence would be obtained by consid-
ering the surrounding blocks in say a 3x3 neighbourhood. However, problems arise in the vicinity of boundaries,
where, for the fusion mechanism to be reliable, it should be trained with examples of each boundary orientation,
for each possible position of the neighbourhood mask over the boundary. Here it is preferred to circumvent the
problem by using single blocks, while incorporating contextual knowledge by including a separate post-processing
stage (along the lines of that used by Chou and Brown (1987a,b & 1988)).

MLP Architectures

MLPs with various node configurations have been tested. The trained MLP was tested by classifying both the
training and test sets. One would expect the classification error for the training set to decrease as the number of
nodes increases i.e. the decision boundary becomes more complex. Applied to the test set, performance should
increase until some optimum configuration is found, beyond which the decision boundary is modelling noise and
consequently loses its ability to generalise. In each case the MLP was trained for 100000 iterations of the complete
training set (240 samples), with the weights being updated after each iteration. This amount of training might be
considered excessive but it almost ensures that the optimisation algorithm reaches a minimum, global or otherwise.
Each MLP configuration was executed about 10 times from different random weight starts. Results are tabulated
for both independent and correlated channels (Table 1).

Table 1. MLP architecture performance (ten random weight starts)

image network transfer training testing

data config. function lowest classification∑
error2

∑
error2 error

3I-1O linear 4.91 13.29 7.08%
independent 3I-1O logistic 0.96 9.39 3.75%

3I-2H-1O logistic <0.01 10.21 4.58%
3I-1O linear 4.90 13.41 7.92%

correlated 3I-1O logistic 0.90 8.89 3.33%
3I-2H-1O logistic 0.80 10.48 5.00%

For the problem above, it appears that the best architecture has three input nodes, no hidden nodes (though
one has been masked) and one logistical output node. This happens to be the simplest network that produces
outputs guaranteed to look like probabilities (i.e. in the range 0 to 1). It is reasonable to suppose, however, that
performance might be improved by adjusting other parameters including learning rate, momentum and the transfer
function. Since the performance achieved is acceptable, and there is no guarantee that any fine tuning will be
applicable to other problems, this architecture will be adopted in future experiments.

Comparison with Standard Classifiers

To determine whether or not the MLP is learning a mapping that is readily determinable by conventional methods,
its performance is compared with those of standard classifiers. Of particular interest are the nearest class mean
(NCM) and k nearest neighbour (KNN) classifiers.

The nearest class mean classifier assigns the unknown input vector, x, the label corresponding to the closest class
mean. The distance metric is often Euclidean, however, if sufficient training samples are available for computing
a reliable covariance matrix for each class, then the Mahalanobis distance M is usually preferred. Its advantage
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lies in its ability to take into consideration the correlations between variables. The Mahalanobis distance between
a single multivariate observation and the centre of a population is given by

Di = (x− µi)
tΣ−1

i (x− µi)

where, for class i, µi is the mean feature vector, and
∑−1

i is the inverse covariance matrix.

Briefly, the k nearest neighbour classifier operates by constructing a hyper-sphere about x which contains k training
samples. From Duda and Hart (1973), k should be odd and ≃ √

n, where n is the total number of training samples.
If, out of the k training samples closest to x, ki of them belong to class ωi, then an estimate of posterior probability
is given by P (ωi|x) = ki/k. The k nearest neighbour algorithm relies on the accurate computation of Euclidean
distance between pairs of points in a high dimensional space. Associated with this are two problems, firstly that
of the unequal variability of features, and secondly, that the features may not be orthogonal. The former is often
alleviated using standardisation, however, this is only appropriate if the spread of values is due to normal random
variation and not the presence of subclasses. Similarly, principal component analysis is often used to counter the
effects of correlated features.

The performances of the MLP, NCM and KNN classifiers are compared. The KNN classifier is tested on raw,
standardised and orthogonalised feature values.

Table 2. MLP, NCM and KNN performances

image classification error and sum squared error rates

data NCM KNN MLP

(M’obis) raw stand. orthog. (3I-1O,logistic)
independent 7.5% 18.0 5.0% 10.8 5.0% 9.9 5.4% 10.8 3.8% 9.4
correlated 7.5% 18.0 11.3% 19.9 10.0% 19.7 5.8% 11.2 3.3% 8.9

The advantage of the NCM classifier is its immunity to the effects of correlated features, however, it has the
disadvantage of being parametric and of not producing classifications in the form of posterior probabilities. The
KNN classifier is non-parametric and theoretically, when supplied with an infinite amount of training data, its
performance is optimal. In practice, however, the KNN classifier relies on having an effective distance metric, and
consequently performance drops when features exhibit widely differing variances or are highly correlated. Attempts
to alleviate these problems by standardisation or principal component analysis can be effective in certain situations,
but in general they cannot be relied upon. MLPs are subject neither to the restrictions of a parametric model, nor
to the problems arising from the computation of distances in feature space. Although there are situations when
the KNN classifier will out perform an MLP, it is the MLPs general purpose nature that makes it desirable.

Conclusions

A multi-layer perceptron has been applied to the data fusion problem. The desirable properties an MLP can be
summarised as follows :

• it is robust to differences in expert reliability;

• it is sensitive to correlations between experts;

• the opinions supplied to the MLP do not have to be probabilistic;

• The outputs of a binary classification network can be interpreted, under certain conditions, probabilities.

Contextual information could be included in the fusion process by using local neighbourhoods. Alternatively,
a probability map generated by an MLP could be combined with prior knowledge (modelled as a Gibbs distribu-
tion) by using a Bayes estimator. Thus spatial coherence between adjacent image blocks can be enforced, and any
prior knowledge of the likely arrangements of image features can be utilised.
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Appendix A: Potential Problems Due to Inconsistent Prior Information.

This problem can be rigorously considered in a Bayesian/Likelihood framework. It is quantitatively valid to
combine probabilities from likelihood estimates of a parameter, the simplest case for independent data being to
multiply the probabilities

P (x|ω) = P (x1|ω)P (x2|ω)
Where ω is the classification hypothesis, with x1 x2 being two statistically independent sets of data. We can then
combine with a prior, if we wish to give an a-posterior probability;

P (ω|x) = P (x|ω)P (ω)

However, simple multiplication of a-posterior probabilities will lead to double counting of the prior;

Q = P (ω|x1)× P (ω|x2) = P (ω|x)P (ω)

In fact, fusion of the results from algorithms which incorporate prior information requires us to first un-do the
effects of the prior in order to produce the objective estimate of parameters based upon the evidence, (this requires
knowledge of what the prior was). These unbiased estimates can then be combined. Data based upon inconsistent
prior information cannot be used directly to produce a quantitatively valid (‘honest’) estimate of probability.

This simplest of examples therefore illustrates that algorithms which use a Bayesian approach to constrain solutions
but do not make available the assumed prior for later stages of processing would be expected to lead to problems
when attempting fusion of these results with those from other modules. If the assumed priors are also implicit
within an algorithm it would be difficult to know if they are consistent with those assumed in other modules.
These and other issues regarding quantitative use of Bayes theory are further discussed in Tina Memo 2002-005.
Use of an MLP for data fusion can be shown to solve these problems, at least for cases where a representative data
sample is available for training (Appendix C).

Appendix B: Boosting and its Problems.

Boosting is a recent suggestion for fusing opinions of multiple simple classifiers. There are many variations and
extensions possible, so in order to keep this discussion general we will define boosting as any combination process
which performs a linear weighting of decisions from classifiers where each is trained on sub-sets of data selected by
one or more of the other simple classifiers. Although this technique may be thought to be a recent innovation, other
authors have suggested equivalent methods previously (see Kittler et.al. BMVC 1997), with equivalent limitations.
The basic idea can be traced back as far as the Perceptron (see below).

In order to make progress we must relate the boosting process to an established statistical method and identify
the assumptions required for the technique to be valid. In this respect majority voting can be considered the
same process as hypothesis testing. Weighted combination is then valid if we interpret the outputs from each
simple classifier as a log-probability, where each may be correlated globally with the others. Clearly however, if the
decision rules for one classifier have been determined by weighting data according to the performance of another
classifier then the data is not global but local and so therefore the combination process is inappropriate.

example: Imagine, that we are building a classification system and start by building one simple classifier. In order to
build a second simple classifier we then weight the selection of a subset of the training data set in favour of majority
classification error. Clearly this second rule partitions this subset of data in the direction of the classification as
intended, but what about the original (full) sample? Do the examples which have now been preferentially excluded
also separate favourably on the basis of this feature? If the answer is no then any advantage in classification gained
by adding the new feature for the data sub-set may be undone when applying a weighted decision to the full data
set.

Avoiding this problem requires that the use of later simple classifiers should be conditional on the decisions made
by earlier classifiers (ie: applied only to appropriate local regions of the data space), similar to the decision trees
found in early papers (circa 1970) on expert systems, such as ID3. The problem with this particular approach is
that it turns our classifiers into binary classifiers (see Appendix D).
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The weighted voting combination process is therefore entirely dependent upon a chance distribution of data density
and cannot be guaranteed a-priori. It may work for some datasets, but not for others. It is certainly not optimal
use of the data. In fact this anti-correlation example is analogous to the X-OR problem (Minsky and Papert)
which killed most research on the Perceptron. In other words, the class of problem which the Perceptron could
not deal with are poorly handled by Boosting, and if this killed the Perceptron in 1968 ......?

The way to solve this problem requires the ability to learn the (potentially local) correlations between outputs
from the simple classifiers. This is precisely what using an MLP for the task achieves. Moreover, this approach is
not restricted to purely global linear correlations, as modelled by techniques such as PCA.

Appendix C: Squared Error Minimisation Causes Output to be Probabilities.

Consider the binary classification of an unknown vector x. The output, f(x), of an MLP having a single output
node is targeted at 0 for class ω0 and 1 for class ω1. The sum-squared error, E, over the training set will then be

E =

∫ ∞

−∞

P (ω0)p(x|ω0)[f(x)− 0]2 + P (ω1)p(x|ω1)[f(x)− 1]2dx − (1)

where P (ωi) is the prior probability of class ωi, and p(x|ωi) is the probability function for x given class ωi. If
the MLP is trained to minimise the sum-squared error (which is the usual training prescription), it will fashion f
accordingly (barring local minima and assuming sufficient network architecture). Differentiating E with respect
to the function f gives

∂E

∂f
= 2p(x|ω0)P (ω0)f(x) + 2p(x|ω1)P (ω1)[f(x)− 1] − (2)

and equating this to zero

f(x) =
p(x|ω1)P (ω1)

p(x|ω1)P (ω1) + p(x|ω0)P (ω0)
− (3)

which is exactly the probability of the correct classification being ω1 given that the input was x. So, training the
network to minimise the sum-squared error, results in a probabilistic classifier. Substituting the f(x) corresponding
to a trained network back into (1) gives

E =

∫ ∞

−∞

P (ω0)p(x|ω0)P (ω1)p(x|ω1)

P (ω0)p(x|ω0) + P (ω1)p(x|ω1)
dx − (4)

the minimum error to be expected given the distributions of ω0 and ω1.

This property of MLP training was also independently identified by Richards and Lippman (1991). The same ideas
have since been reinvented by Platt et al. (1999) as methods for correcting the outputs of support vector machines
and Boosting (Niculescu-Mizil, 2005), in order to generate honest conditional probabilities of class and improve
classification performance 4.

Appendix D: Theory of Probability Fusion.

We wish to understand the limits of fusing outputs from low level vision modules, and in particular what it would
mean to perform this process in an optimal manner. Assuming that the low level modules deliver probabilities,
for example P (ω|x1) and P (ω|x2), then the process of training an MLP to fuse these values can be considered as
learning the mapping function Fω for;

Fω(P (ω|x1), P (ω|x2)) = P (ω|P (ω|x1), P (ω|x2))

Clearly, the optimal way to use the data x1 and x2 would be to compute

P (ω|x1, x2)

we generally must abandon any hope of computing this quantity due to the volume of the pattern space covered
by all possible values of xi. This is normally the justification for taking the modular approach and attempting

4Some readers might be suprised to hear that it is neccesary to bolt the equivalent of a neural network onto the back of a Boosted

or SVM classifier in order to get them to work properly.
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subsequent fusion. We can say that these two approaches are equivalent only if the information content in the
original data is still present in the probabilities; ie:

P (ω|P (ω|x1), P (ω|x2)) = P (ω|x1, x2)

Or put another way, that the original data can be theoretically regenerated (but for any unwanted invariances) from
the probabilities. This concept can be referred to as the vector (P (ω|x1), P (ω|x2), .., P (ω|xi)) being a “complete”
representation of the data vector (x1, x2, ..., xi). We can see that this is unlikely to be possible with a system which
recognises only a small set of data types ω, as the encoded representation will simply not have enough degrees
of freedom to capture the dimensionality of the original data. It is however, very likely to happen if we have a
sufficiently rich set of competing hypothesis categories with which to represent the data in the region of ω.

This analysis is also valid for replacement of the P (ω|xi) with any monotonic function, lending theoretical validity
to a wide variety of approaches. However, its also illustrates the importance of working with continuous valued
outputs from our low level modules, binary output quantities should clearly be avoided. This appendix has been
largely derived from the work presented by Ian Poole at BMVC 1990, who shows that the mapping process satisfies
the above requirements if the data to be fused has the property of Class Conditional Independence (CCI).
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