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1 abstract

In order to successfully track moving objects it is necessary to understand their motion. Such motion will inevitably
change with time, thus attempting to fit the same model all of the time is inappropriate. An evaluation of the single
model Kalman filter described in this paper demonstrates this. A maximum model coverage technique, however,
would provide a intractable solution because of the exponentially increasing number of models required.

We present a solution which uses a finite set of models all making predictions on the data. One model is selected
from the set on the basis that it best accounts for the data. A Kalman filter is then used to refine this model whilst
it is appropriate. The remaining models continue to make predictions and at any time the filtered model may
be replaced by one that more accurately describes the data. Experimental results demonstrate the improvement
the switchable model Kalman filter provides over the single model Kalman filter. Problems using the chi-squared
metric for model selection are discussed and a more appropriate metric, the Bhattacharyya integral, introduced.
The desired properties of this integral are exposed via its analytic solution. It is believed that the statistical
methods underlying this work may also have applications in other system identification problems.

2 Introduction

The goal of visual motion analysis is to develop a dynamic internal representation of the motion of objects in the
world from an image sequence. In other words we wish to build a model of the observed motion and then use it to
predict what the data will do in the future.

The problems that prohibit the recovery of accurate optical flow [1] and the constraints it places on the expected
motion [2] mean it does not provide suitable data for model based tracking. It is our opinion that features present
a more robust and less constrained set of object data for this type of tracking. The corner feature is particularly
suited as it does not suffer from the aperture problem (as edges do).

The single model Kalman filter [3] has been used by many researchers to estimate model parameters based on
the motion of visual features such as corners. If an accurate model of the system is supplied to the filter optimal
model parameters can be achieved. However our experiments with the single model Kalman filter highlighted two
common problems. First, when the motion of the feature changed dramatically but remained in accordance with
the model, the prediction from the filter responded with an under/overshoot followed by exponential decay back
to the correct prediction. The second problem was evident when the motion of the feature changed and could not
be accounted for by the model. Such circumstances result is both inaccurate prediction and an unstable model.

Another common filter is the Lattice filter [4] and [5]. This is an alternative to the more common transversal filter
and exploits a Toeplitz form of the autocorrelation matrix in order to solve the optimal filter normal equations.
The assumed auto-regressive (AR) nature of the signal gives rise to an implementation where the filter weights
or ‘reflection coefficients’ form a lattice structure between delayed and undelayed paths of the input signal. By
monitoring the output of each lattice delay stage the order of the filter can be increased. However, over complex
models can lead to unstable solutions and unnecessary prediction errors. Also the internal model generated is not
a sensible model of the movement as individual parameters do not relate to physical motion characteristics [6]. A
more practical problem with the filter is that it is necessary to provide data at discrete time intervals. This can
cause problems when using image features because their detection is dependent on factors such as the detector
performance and occlusion.

In the case where the origin of the data is uncertain, data combination filters such as the Probalistic Data Asso-
ciation Filter (PDAF) of Bar-Shalom [7] are commonly used. With such techniques, estimations generated from
either a set of candidate data or a set of candidate models are combined as a weighted sum. The weights being
the probabilities that each datum or model was correct. The resultant estimate is therefore based on total evi-
dence. Estimations from the PDAF are generated using embedded single model filters typically the Kalman filter,
therefore the problems discussed above can to some extent be attributed to the PDAF. Further the incoming data
arose from only one source and therefore mixing predictions from multiple sources will introduce error.

What is needed is a filter capable of selecting the most appropriate model, based solely on the data, from a set of
models. Selection of one model will not only reduce the error but will classify the motion of a feature. Further
the model selection criteria should prefer the simplest model capable of predicting the data. This would ensure
that the filter is representing the data in the most appropriate form, using the most stable model that predicts as
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accurately as the measurement system allows. We have therefore developed a switchable model filter based around
the Kalman filter.

3 Development of Kalman filter algorithms

3.1 Single model Kalman filter

Our initial work involved a single model Kalman filter with a constant velocity model of motion. The representation
of constant velocity used by the filter was as shown in appendix A. This representation is known as moving origin
where the previous position prediction as well as current velocity estimation are available as state variables. The
initial estimates of the state variables were generated using the constant velocity equations of appendix A, together
with two frames of data from a single extracted corner feature. This initial state prediction was augmented with
an initial estimate of covariance using the error propagation technique summarised in appendix B. This technique
propagates the measurement error through the model providing an accurate initial estimate of covariance as
opposed to an arbitrary ‘big’ one. This is something which is utilised in the switching algorithms discussed later.
An artificial sequence of a single corner moving with stages of constant velocity and constant position was used to
test the filter.

In order for the prediction to obey the underlying motion of the data and not attempt to predict the sporadic
random noise overlaid upon it, the filter has a finite response time. This response time is automatically set by the
filter using the specified error covariance and perturbation. Provided the incoming data obey the embodied model
the predictions made by the filter are optimal in the mean squared error sense. However if, as is often the case in
dynamic systems, after a period of time the observed data is drawn from a model other than the one described to
the filter, the predictions will become incorrect.

The single model Kalman filter will always modify its parameters on the assumption that the data is consistent
with the basis model it was using. We have found that this presents two problems. Firstly, if after a change in
the motion parameters the data was still consistent with the embodied model a finite period of error prediction
was incurred while the model parameters were modified. This ‘sluggish’ behaviour is a result of the finite response
time. In order to reduce the time constant of this response it is common practice to modify the error covariance
and/or perturbation until critical damping is achieved. However the response time is set by the filter in order
to take account of the random additive noise. Therefore modifying it for a different system behaviour effects the
filters ability to perform accurate data combination. Secondly, if the underlying motion changed completely so
that the data was no longer consistent with the filter basis model the filter was unable to find a stable parameter
set. This results in both large prediction error and model instability because fundamentally the model was wrong.

3.2 Switchable model Kalman filter

If we consider the problems of the single model filter we find they are both attributable to the assumption that all
the data is drawn from the same model and that the parameters of that model change slowly relative to the noise
variation. In order to overcome this assumption we suggest the addition of a parallel set of alternative models.
Each model makes a prediction using the minimum amount of recent data. All predictions including the Kalman
filter one are compared to the next measurement. The model which most accurately predicts this measurement is
selected for combination with subsequent data using the Kalman filter. This model is copied to the filter in place
of the previous one. The rest of the models including the original of the winning model are reset ready to make
predictions, together with the Kalman filter on the next frame of data. See figure 13.1.

The Kalman filter uses the model which best described the previous measurement. It refines the parameters of
this model in accordance with the specified system statistics. If the data changes abruptly a more appropriate
model can be switched in. This new model may be completely different from the current model if the data is better
described that way. Or it may be the same basis model but with different parameters. This is possible because
the model currently used by the Kalman filter is also available in unfiltered form. The unfiltered form is using the
minimum amount of data needed to make a prediction and thus can respond rapidly to parameter changes. In
this way we are more likely to have the most appropriate model for the data and therefore should make accurate
predictions.

The problem remaining is that of how to make the model selection. The naive solution to this would be to select
the model whose prediction is closest to the measurement. However, more complex models, having more free
parameters, are able to predict a greater variety of data sets. This means that a complex model cannot predict
any one data set as strongly as a simpler model. In other words we need to consider the complexity of the model,
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Figure 1: Switchable Model Kalman Filter Algorithm

preferring the simplest model capable of accurately predicting the data, in order to ensure we have the most
probable hypotheses for the data. Because model complexity is proportional to the width of the distribution this
biased selection can be considered as an algorithmic embodiment of Occams razor.

The likelihood, eqn 13.1, is commonly used to help fit a given model to a set of data and could be considered
an obvious candidate for model selection as a test which confirms that the current data point is consistent with
a particular model prediction. We will refer to this approach here as a form of chi-square 1. The form of the
chi-squared shown is not a log-likelihood and includes a normalisation term. This term can be ignored when using
the chi-squared to fit model parameters to data as it is constant. However, in this case it is included because
the model itself is changing (fixing the normalisation in this way is consistent with the application of Extended
Maximum Likelihood).

χ2 =
1√

2π(σ2
m + σ2

p)
exp−

[
(µm − µp)2

2(σ2
m + σ2

p)

]
(1)

Computation of the chi-squared requires measurement µm and measurement error σm. For any feature detection
process the expected measurement error can be deduced or measured by experiment. We also need to compute
a variance on the model prediction σp. For the unfiltered model predictions this is achieved by propagating the
measurement error through the model as shown in appendix B. The Kalman filter already provides a covariance
prediction for the state variables and so no extra computation is required. When compared to the measurement,
selecting the model with the largest chi-squared could be considered as selecting the most appropriate description
of the data. Or is it?

4 Bhattacharyya measure

The question that we should be asking when selecting a model is; which model will give the best prediction of the
next data point based on the latest data point? We will assume that the model which provided the best constraint
on the current data point will be most likely to give the best constraint on the next. The prediction power of a
Kalman filter has as much to do with the width of the distribution of the prediction of the filter as the central
value. Following this line of reasoning we can conclude that the best prediction that the Kalman filter could make
for the distribution of the next data point would be the one which matched the distribution of the observed data,
not just a close estimate in the sense of a chi-squared but a correctly bounded estimate. Given this interpretation
we suggest the use of an alternative similarity metric, the Bhattacharyya integral [8], eqn 13.2. This integral has
been used by other researchers in the field of pattern recognition as a two class separability metric [9]. It has also
been used as a similarity metric [10] to verify the similarity of two distributions and it is in this context that we
use it, see appendix C. However our interpretation of the result is not as an upper bound on the Bayes error as in
[10], but as an absolute measure of distribution similarity as in [11].

1This is not the standard use of this term and we apologise for any potential confusion
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In order to best appreciate the Bhattacharyya metric the analytical solution of the integral for one dimensional
Gaussian distributions is presented, eqn 13.3. The key steps of its derivation are given in appendix D.
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The form of the Bhattacharyya integral is similar to the chi-squared and like the chi-squared it weights the
result in favour of the simplest model. However, the Bhattacharyya integral differs from the chi-squared in the
normalisation term such that the integral is dimensionless. It is interesting to note that only when the square root
of the probabilities are taken is the result of the probability overlap integral dimensionless, as it must be for a
probablistic comparison measure.

For the case in two dimensions it can be shown that the solution is the addition of two one dimensional solutions,
after taking their natural logarithm, (eqn 13.4).
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This solution can only be used when the two distributions are uncorrelated. If they are not we are left with the
integration of a cross term which has no direct analytic solution.
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Figure 2: Transformation to Ensure Uncorrelated Errors.

4.1 Orthogonalisation

In order to ensure that this cross term does not exist we need to transform the data into a co-ordinate system
where the two distributions are aligned with the parameter axes. The algorithm to perform this transformation is
a variation on simultaneous diagonalization [12] and is as follows;

• Select a co-ordinate system, x and y, parallel to the measurement errors. These will be orthogonal co-ordinates
by virtue of the measurement space.

• Scale the errors so that the x and y measurement error ellipse becomes a circle (not necessary when we are
dealing with square pixels).
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• Find the principle axes of the prediction error ellipse. These are the eigen vectors of the prediction covariance
matrix.

• Using the principle axes to define the new co-ordinate system transform the data into this system.

The diagram of figure 13.2 demonstrates this transformation showing the orientations of the error ellipse before
transformation, A, and after, B transformation. In this way the analytical form of the integral can be used to
compare each prediction with the measurement, selecting the model with the largest similarity score.

5 Experiments and results

To compare the switchable filter to the single model filter and to compare the performance of the chi-squared
and Bhattacharyya metrics a series of experiments were performed. For the switchable methods a second model,
constant position, was added. Although simple the constant position model together with the constant velocity
model provides sufficient information to form a complete description of the motion of the feature in the artificial
sequence. Two forms of error were introduced to the recovered data. First a random position error from a
Gaussian distribution of 0.3 pixel variance. This simulated inaccuracies in the detection process and is typical
of corner detection [13]. Second, for every experiment the amount of recovered data supplied to the filter was
varied from 100% down to 50%. This was done to simulate detection reliability, which for corner detection and
correspondence solving is in the range 60%-80% [13] and visual occlusion which is entirely scene dependent. For
each algorithm the experiment was repeated 100 times for every percentage of missing data. After each experiment
the average prediction error per frame was calculated. This value does not include outlier predictions, classed as
any prediction outside of 3 standard deviations from the measurement. The value displayed on the graphs is the
average, over 100 experiments, of the average prediction error per frame. Its value is, therefore less dependent
upon the location of the missing data.

The first graph of figure 13.3 shows the results from the single model and chi-squared switching algorithms.
The improvement in prediction accuracy of the switching algorithm is obvious from the graph. The chi-squared
performed 23.44 model switches with 100% of the data leading to 4.46 outlier points being identified. The single
model method, believing all data is consistent with the model has a much larger expected error and thus identifies
very few outliers only 0.02 on average with all the data. The second graph of figure 13.3 compares the results
using the chi-squared and Bhattacharyya as switching metrics. The Bhattacharyya provides visible improvement
over the chi-squared, particularly as the amount of missing data increases. The Bhattacharyya performed 19.52
model switches with 100% of the data leading to 3.91 outlier points being detected. The number of actual motion
changes in the sequence was 5.00.

Figure 3: Prediction Error Graphs for the 3 Methods

6 Discussion and conclusion

The results show that switching can give superior results given that model coverage is sufficient. After a change in
the observed motion a latency of a single frame is incurred, where the incorrect model is used to make a prediction,
before the correct model is switched in. We have demonstrated the technique using only two simple models.
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However any number of models, each of differing complexity, can be used. Best results being obtained when the
model set provides complete coverage over the expected motion.

In this paper we have discussed the need for on-line model selection when tracking moving features. To this
end we have presented the finite memory switchable model Kalman filter. We have shown the need to prefer
the simplest model which accurately predicts the data. Although the chi-squared metric embodies this property
we believe that a better selection criterion can be based on trying to select the model which will give the most
accurate constraint on the next measurement (i.e. the model which has the best prediction ability). We believe
that the effectiveness of this constraint is embodied in the Bhattacharyya overlap integral, although this is not the
conventional interpretation of this measure.

Experimental results demonstrate the improvement gained using the switchable model Kalman filter over the usual
single model Kalman filter as well as the greater prediction accuracy achieved using the Bhattacharyya metric for
model selection rather than the chi-squared. The ability of the switchable model Kalman filter not only to give
improved prediction accuracy but also to classify the data in terms of one particular model leads us to believe that
extensions of this statistical technique would have applications in other classes of system identification problem.

Appendix A. Constant velocity model

Vx =
x(n+ 1) − x(n)

δt
Vy =

y(n+ 1) − y(n)

δt

x(n+ 1) = x(n) + Vxδt y(n+ 1) = y(n) + Vyδt

which can be formulated as p(n+ 1) = Hp(n) where

H =

1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1

p(n) = (x(n), y(n), Vx(n), Vy(n))T

Appendix B. Error propagation

The estimate on the covariance on the initial estimate of the state variables Cp is given by

Cp = F TCF

F = ∇xp(n+ 1) , X = (x(n), y(n), x(n+ 1), y(n+ 1))

where for δt = 1

F =

2 0 1 0
0 2 0 1
−1 0 −1 0
0 −1 0 −1

C =

σ2
xn 0 0 0
0 σ2

yn 0 0
0 0 σ2

xn−1 0
0 0 0 σ2

yn−1

Appendix C. Relationship to frequency coded distributions.

The standard maximum likelihood statistic for comparing two frequency distributions Sa and Sb is given by

χ2 =

n∑

i

(Sia − Sib)
2/(Sia + Sib)

Each frequency measure will be distributed as a Poisson which in the limit of large numbers will approximate
Gaussian distributions with variance Si.

For small variances the chi-squared statistic can be approximated in any alternative space for which there is a
smooth continuous mapping function F (S).

χ2 =

n∑

i

(f(Sia)− f(Sib))
2

(∂f(Sia)
∂Sia

)2Sia + (∂f(Sib)
∂Sib

)2Sib
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In the special case of f(S) =
√
S we obtain the Matusta distance measure.

χ2 = 4

n∑

i

(
√
Sia −

√
Sib)

2

Mapped to this space all probability values have the same variance, the space has thus been linearised. Notice also
that the possible infinities in the original definition are now finite.

We argue that in this space large scale differences between the two distributions are more meaningful than the
original χ2 definition. In the limit of probability distributions

χ2 = const − 8

n∑

i

√
Pia
√
Pib

giving the Bhattacharyya distance measure as the similarity function. The conventional use of this measure is as
an upper bound on the Bayes error for a two class assignment problem. Instead, we suggest the use of this measure
not as a estimate of separability but as an absolute measure of similarity.

Appendix D. Analytical 1D Bhattacharyya

With Gaussian distributions the Bhattacharyya integral becomes

Bl = − ln 1√
2πσaσb

∫ ∞

∞
exp− 1

4
((x− µa)2/σ2

a + (x − µb)2/σ2
b )dx

= − ln
exp (µa−µb)2

4(σ2
a+σ2

b
)√

2πσaσb

∫ ∞

∞
exp−

(
σ2
a + σ2

b

4σ2
aσ

2
b

(
x− σ2

bµa + σ2
aµb

σ2
a + σ2

b

)2
)
dx

= − ln(

√
2σaσb√
σ2
a + σ2

b

) +
(µa − µb)2

4(σ2
b + σ2

a)
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