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The Bhattacharyya Measure Requires No Bias Correction.

Abstract

This paper aims to show that the Bhattacharyya measure [2]

LB =

∫ b

a

√

p(x|f)p(x|h)dx

for comparing probability density distributions p(x|f) and p(x|h) has zero bias in the sense of the
standard problems associated with maximum likelihood measures and estimated using the Akaike In-
formation Criterion (AIC [1]). We start by reviewing the origins of this measure, when derived as
the limit of a Likelihood measure for large samples. We then show how the assumptions used in the
derivation of AIC are satisfied exactly for the LB measure, which has a predicted bias of exactly zero2.

1 Introduction

It is known that the square-root transform is the variance normalising transform for Poisson data [7]. This produces
a close approximation to a Gaussian distribution for small sample sizes, which becomes exact for infinitely large
samples [3]. In a recent paper we evaluated the suitability of using the variance normalising square-root transform
as the basis of a measure for comparison of Poisson samples (such as histograms) [13]. Differences between
transformed values can be interpretted as a Maximum Likelihood (effectively least squares) measure. The analysis
shows that this space is thus a natural domain in which to construct a Euclidean distance measure as (unlike simple
weighted differences between Poisson variables) minimum cost paths between locations are straight lines. This is
the equal variance domain for such data [12]. The logical extension of this work is to apply the measure in the limit
of an infinite number of samples, ie: a frequentist definition of probability density. In the process we regenerate the
Bhattacharyya measure as a measure of similarity between two probability distributions. The Likelihood origins
of this derivation imply the possibility that the measure might require correction due to bias (in the AIC sense
[1]). In this paper we show that the AIC measure is indeed applicable to this measure but when evaluated is
found to be zero for LB . Thus showing that the Bhattacharyya measure is unbiased and can therefore be used for
model selection, by comparing the degree of overlap between observed and predicted probability densities. This
problem is directly related to the so called “bias-variance dilemma” in the area of artificial neural networks [5]
and is covered in [11] with further examples in [8, 10].

2 Comparison of Probability Densities.

We define probability densities as a Poisson sample of data Ni distributed on some continuous variable xi, in the
infinite sample limit. A similarity measure for probability densities can be derived in the following manner. We
start in the discrete space Xi of finite samples Ni. We can therefore construct a statistical similarity measure for
two samples N and M with different but known total sample sizes

Ntot =
∑

i

N(Xi) and Mtot =
∑

i

M(Xi)

in the form of the probability of generating distribution M from distribution N given Poisson perturbations, as

ln(P ) ≈
∑

(
√

M(Xi)−
√

N(Xi))
2

= Mtot +Ntot − 2
∑

i

√

M(Xi)
√

N(Xi).

Notice that this similarity measure is valid for all Ntot and Mtot, and that the line of the minimum-cost path takes
us through distributions of varying normalisation. Also, the approximation to Likelihood improves with increasing
sample sizes and is exact in the limit.

2This bias is not related to the bias obtained when using the measure as an upper limit on the Bayes classifcation error between
two distributions.



Now consider two distributions DN (Xi) = N(Xi)/Ntot and DM (Xi) = M(Xi)/Mtot, in the absence of the nor-
malisation terms. What can we say about the difference between the vectors of densities DN and DM? We know
from the above analysis that we strictly needed Ntot and Mtot in order to construct a valid statistical similarity,
as the quantity of data in each sample defines the information content. However, consider the following measure:

LD =
∑

i

(
√

DM (Xi)−
√

DN (Xi))
2

= 2− 2
∑

i

√

DM (Xi)
√

DN (Xi)

= 2− 2

∑

i

√

M(Xi)
√

N(Xi)√
MtotNtot

.

We can see that it differs from the log probability expression only by offset and normalisation terms. We can
therefore use this measure to compare densities, regarded as frequency ratios, for fixed but arbitrary normalisations
of N and M. Although we have chosen to normalise to Ntot and Mtot, the same analysis would hold regardless of
what we might use.

To apply this to probability densities, we observe that the above analysis is still valid when taking the limit
Ntot → ∞ and Mtot → ∞. Now densities ratios become probabilities, so that

LP = 2− 2
∑

i

√

P (Xi|M)
√

P (Xi|N)

is a valid way of comparing vectors of probabilities. Equally, as we approach a continuum limit Xi → xi with
P (Xi) = p(x)∆Xi → p(x)dx, the ratios become densities, and for unit integral normalised probability densities we
get the Matusita measure (LM ),

LM =

∫ b

a

(
√

p(x|M)−
√

p(x|N))2dx

which is monotonically related to the Bhattacharyya measure (LB),

= 2− 2

∫ b

a

√

p(x|M)
√

p(x|N)dx = 2− 2LB

Notice that nothing in the above construction required that the integral of a probability density must be unity;
this has only been done for convenience. Moreover, the freedom to be able to specify an interval a, b implies that
there cannot be a unique normalisation, ie: the density is defined in the interval we choose to observe it. This
interpretation of probability density is therefore consistent with the conventional observation. Probability densities

are not probabilities and do not obey the standard laws of probability.

3 The Akaike Information Criterion (AIC)

Conventional approaches to parameter estimation are often developed from maximum likelihood. In particular
many approaches are based on weighted least squares fitting;

χ2 =

N
∑

i=1

(yi − f(xi, θ))
2/σ2

i

where θ is an estimate of the vector of parameters for the function f and yi is the data set with expected error
σ. It is now well known that this function gives a biased result, in that as more model parameters are added the
χ2 will reduce, eventually to zero. Such a statistic can therefore not be used directly for model comparison and
selection.

The equivalent probabilistic form of the χ2 is written as follows;

χ2 = − 2
N
∑

i=1

log(p(xi, θ))

The limit of the bias is estimated directly as ;

q = < 2

N
∑

i=1

log(p(xi, θ)) > − < 2

N
∑

i=1

log(p(xi)) >
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where p(xi) is the true probability from the correct model and < X > denotes the expectation operation. We can
expand this about the true solution θ0 as;

q = < 2

N
∑

i=1

[log(p(xi, θ0)) + (θ − θ0)∂log(p(xi, θ0))/∂θ

+
1

2
(θ − θ0)

TH(xi, θ0)(θ − θ0) + h.o.t] > − < 2
N
∑

i=1

log(p(xi)) >

where H(xi, θ0) is the Hessian of the log probability for a single data point. The second term has an expectation
value of zero and excluding the higher orders the remaining terms can be re-written as;

q′ = < 2
N
∑

i=1

log(p(xi, θ0))− 2
N
∑

i=1

log(p(xi)) >

+ <

N
∑

i=1

(θ − θ0)
TH(xi, θ0)(θ − θ0) >

The first expectation term is 2n independent estimates of the Kullback-Liebler distance LKL(p, pθ0) and the second
term can be re-written using the matrix trace identity such that

q′ = 2nLKL(p, pθ0) + trace(<
N
∑

i=1

H(xi, θ0)(θ − θ0)(θ − θ0)
T >)

which can be reduced further to

q′ = 2nLKL(p, pθ0) + trace(<

N
∑

i=1

H(xi, θ0) >< (θ − θ0)(θ − θ0)
T >)

This result is now directly interpretable, as for the correct model the Kullback-Liebler distance is expected to be
zero 3. The remaining term contains the information matrix for the data, more frequently used to approximate
the inverse covariance of the parameters and the covariance on the parameters. For a well determined system we
would expect the trace of the product of these matricies to be the rank of the parameter covariance. This is simply
the number of model parameters k and leads to the standard form of the AIC measure used for model selection

AIC = χ2 + k

For badly determined parameters the information matrix may not be full rank and the trace will be the number
of linearly independent parameters determined in the model with this data set.

In fact this derivation (based upon that presented in [15]) is over simplistic, and the more accurate estimate
gives a correction term of 2k [4]. This difference does not however, invalidate what follows. For the benefit of
the following sections it is worth pointing out one feature of a key assumptions in this derivation. This is; the
quadratic expansion of the expectation will be exact for Gaussian distributed errors and a linear function model,
or equivalently in the limit of very small errors.

4 Estimating bias of the Bhattacharyya Measure.

In this section we aim to show that the AIC measure is directly applicable to the Bhattacharyya measure and that
the expected value of the bias is zero.

We start by considering the distance measure

L = 1− (b− a)

(4mN)

N
∑

i=1

(
√
f i −

√
hi)

2

var(
√
f i) + var(

√
hi)

3We are not claiming here that this measure is the correct way of performing this comparison, only that KL is zero for identical
PDFs.
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where fi and hi represent frequency measures from m samples in the range a to b of a quantized variable x. The
term in the sum is a maximum likelihood estimator (least squares) which assumes that

√
f i and

√
hi have Gaussian

distributions and from the argument above the expected bias is N as each frequency measurement also represents
an independent model parameter. The results on estimation of bias using the Akaike approach presented in the
previous section are therefore directly relevant and the total bias on L is given by;

q′ = − (b− a)/(4m)

as we have N independant variables. In the limit that the number of samples m becomes infinite the estimated
frequency ratios tend to conditional probabilities P (i|f) and P (i|h). Moreover, using the law of large numbers and
error propagation it is clear that the variance terms become equal and constant [13]

var(
√

f i) = var(
√
hi) = 1/4

while in this limit the distributions for
√
f i and

√
hi become exactly Gaussian. In this limit we can now rewrite

L as

Lp = 1− (b− a)

2N

N
∑

i=1

(
√

P (i|f)−
√

P (i|h))2

The bias q′ on Lp will clearly tend to zero in this limit. Thus we can use such measures as estimates of similarity
between vectors of probability values without worrying about bias. In other words they are suitable for model
selection.

Going now one step further and allowing (b − a)/N to tend to zero, so that the sum becomes an integration we
get.

LB = 1− 1

2

∫ b

a

(
√

p(x|f)−
√

p(x|h))2dx

Where p(x|f)and p(x|h) are probability density functions. This again has zero bias. Rewriting this slightly by
expanding the squared term and forming three separate integrations we get

LB =

∫ b

a

√

p(x|f)
√

p(x|h)dx

which is the Bhattacharyya measure, although this derivation from a likelihood measure is completely different to
the original motivation [2].

It is interesting to note that on the way to generating this result, the limits ensure that all assumptions regarding
the derivation of the AIC measure are satisfied exactly and q′ = q = 0. Thus any measures for model comparison
based directly on this or equivalent measures require no bias correction and can be used directly for model selection
[8, 10, 14].

5 Discussion

There is nothing particularly special regarding the elimination of bias for the Bhattacharyya measure. Any proba-
bility similarity measure which can be formulated from a log-likelihood approach will have the same property, for
example

Lχ2 =

∫ b

a

(p(x|f)− p(x|h))2
(p(x|f) + p(x|h)) dx

which should be immediately recognisable as a generalisation of the conventional χ2 measure, also has this property.
Other probabilistic similarity measures can also be constructed which are symmetric (as required) under interchange
of probability distributions. However, the Bhattacharrya measure and the related Matusita measure [6]

LM =

∫ b

a

(
√

p(x|f)−
√

p(x|h))2dx

are the only ones which linearise the distance metric generated by the Poisson nature of the definition of probability
densities. An analogous approach for the comparison of probability distributions computed using Bayes Theorem,
derived for the frequentist definition as the limit of a Binomial sample, uses the arcsin transform and is given in
[12].
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Finally, it should be noted that this proof pertains to bias in the Akaike sense (i.e. as a consequnece
of degree of freedom effects), not any other arbitrary definition. Also any attempt to compute the
Bhattacharrya measure for samples of data where the main noise mechanism is not consistent with
random independant Poisson samples (e.g. histograms of grey levels from an image) is not expected
to be statistically valid.
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