The Effects of a Square Root Transform on a Poisson Distributed Quantity.

N.A. Thacker and P.A. Bromiley

Last updated
25 / 01 / 2009
The Effects of a Square Root Transform on a Poisson Distributed Quantity

N.A. Thacker and P.A. Bromiley
Imaging Science and Biomedical Engineering,
School of Cancer and Imaging Sciences,
University of Manchester, Stopford Building,
Oxford Road, Manchester, M13 9PT.
paul.bromiley@man.ac.uk

Abstract

The shape of the Poisson distribution is controlled by a single parameter λ, which determines both the mean and the variance. It is well known that, at large values of λ, the Poisson distribution is well approximated by a Gaussian distribution, due to the central limit theorem. However, it has been asserted that, after transformation into square-root space, this is more accurate at lower values of λ, and furthermore the variance of the distribution is made constant across the space, making the distribution a more valid basis for a similarity function. This document provides more proof for this assertion based upon an estimate of the errors associated with both approaches.

1 Approximation of a Poisson to a Gaussian

We start by calculating the errors associated with approximating a Poisson distribution with a Gaussian distribution with variance equal to the mean. Let $P(x|\lambda)$ be a Poisson distribution with mean λ,

$$P(x|\lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Applying Stirling’s approximation,

$$\alpha! = \alpha^\alpha e^{-\alpha} \sqrt{2\pi \alpha}$$

which is accurate to better than a few percent for $\lambda > 5$ and becomes exact as $\lambda \to \infty$,

$$P(x|\lambda) = \frac{e^{-\lambda} \lambda^x}{x^x e^{-x} \sqrt{2\pi x}}$$

This is generally approximated by a Gaussian distribution $G(x|\lambda)$ with mean λ and standard deviation $\sqrt{\lambda}$

$$P(x|\lambda) = \frac{e^{-\lambda} \lambda^x}{x^x e^{-x} \sqrt{2\pi x}} = G(x|\lambda) e^{h(x,\lambda)} = \frac{e^{-(x-\lambda)^2/2\lambda}}{\sqrt{2\pi \lambda}} e^{h(x,\lambda)}$$

where $e^{h(x,\lambda)}$ is the approximation error.

Taking logarithms of both sides gives

$$x - \lambda + x \ln(\lambda) - x \ln(x) - \ln(\sqrt{x}) = -\frac{(x-\lambda)^2}{2\lambda} - \ln \sqrt{\lambda} + h(x,\lambda)$$

which can be re-written as

$$(1 + \frac{1}{2x}) \ln(\frac{\lambda}{x}) = -\frac{(x-\lambda)}{x} - \frac{(x-\lambda)^2}{2\lambda x} + \frac{h(x,\lambda)}{x}$$

Making the substitution $\frac{\lambda}{x} = z + 1$ gives

$$(1 + \frac{1}{2x}) \ln(z + 1) = \frac{1}{2}(z + 1) - \frac{1}{2(z + 1)} + \frac{h(x,\lambda)}{x}$$

This approximation introduces a multiplicative error that is the same in the following analyses.
Using the Mercator series expansion (which is valid for $-1 < z < 1$ or $\lambda/2 < x < \infty$) for $\ln(1 + z)$

$$
\ln(1 + z) = z - \frac{1}{2} z^2 + \frac{1}{3} z^3 - \frac{1}{4} z^4 \ldots
$$

and the binomial expansion

$$(1 + \alpha)^\beta = 1 + \beta \alpha + \frac{\beta(\beta - 1)\alpha^2}{2!} + \frac{\beta(\beta - 1)(\beta - 2)\alpha^3}{3!} \ldots
$$

for the reciprocal z term gives

$$(1 + \frac{1}{2x})(z - \frac{z^2}{2} + \frac{z^3}{4} + \ldots) = z - \frac{z^2}{2} + \frac{z^3}{2} - \frac{z^4}{2} + \ldots + \frac{h(x, \lambda)}{x}
$$

Thus the error term is given by

$$h(x, \lambda) = \frac{z}{2} - \frac{z^2}{4} + \frac{(x - 1)z^3}{6} + \frac{(2x - 1)z^4}{8} \ldots
$$

which has large linear factors in z for small x but is dominated by the cubic terms for large x. It is also worth pointing out here that in practical circumstances we measure x as an estimate of λ and must approximate the probability of λ given x. Under these circumstances Eq. ?? becomes

$$G' (\lambda|x) = \frac{e^{-\frac{(x-\lambda)^2}{2x}}}{\sqrt{2\pi x}} e^{h'(x,\lambda)}
$$

There is thus a different approximation error for this case which follows from a similar analysis and is

$$h'(x, \lambda) = \frac{(\lambda - x)^3}{3x^2} - \frac{(\lambda - x)^4}{4x^3} + \ldots
$$

2 Approximation of a Square-Root Poisson to a Gaussian

We now wish to estimate the error associated with approximating the distribution of the square root of a Poisson variable with a Gaussian. Starting from Eq. ?? the transformation from x to \sqrt{x} satisfies the conditions for the use of the well-known change of variables formula for a differentiable function,

$$g(y) = f[r^{-1}(y)] \frac{dr^{-1}y}{dy} \text{ if } y = r(x)
$$

giving

$$P(y|\lambda) = \frac{2ye^{-\lambda y^2}}{(y^2)^{\frac{1}{2}}} e^{-y^2} \sqrt{2\pi y^2} = \frac{2}{\sqrt{2\pi}} e^{y^2(1 - \ln \frac{y^2}{2}) - \lambda}
$$

Now substitute

$$\lambda = \gamma^2
$$

given

$$P(y|\gamma) = \frac{2}{\sqrt{2\pi}} e^{y^2(\ln \frac{\gamma^2}{2} + 1) - \gamma^2}
$$

Approximating this with a Gaussian distribution $G(y|\gamma, \sigma = 0.5)$ with mean γ and standard deviation 0.5

$$G(y|\gamma, \sigma = 0.5) = \frac{2}{\sqrt{2\pi}} e^{-2(y-\gamma)^2}
$$

gives

$$P(y|\gamma) = \frac{2}{\sqrt{2\pi}} e^{y^2(\ln \frac{\gamma^2}{2} + 1) - \gamma^2} = G(y|\gamma, \sigma = 0.5)e^{\theta(y,\gamma)} = \frac{2}{\sqrt{2\pi}} e^{-2(y-\gamma)^2} e^{\theta(y,\gamma)}
$$

4
where \(g(\gamma, y) \) is the approximation error. Taking logarithms of both sides gives

\[
g^2 \ln \frac{y^2}{y} + y^2 - \gamma^2 = -2(y - \gamma)^2 + g(\gamma, y) \quad \text{or} \quad \ln \frac{\gamma^2}{y} = \frac{4\gamma}{y} - 3 - \frac{\gamma^2}{y^2} + \frac{g(\gamma, y)}{y^2}
\]

As in the previous derivation, substitute

\[
z = \frac{\lambda}{x} - 1 = \frac{\gamma^2}{y^2} - 1
\]

giving

\[
\ln (z + 1) = 4\sqrt{z + 1} - 3 - (z + 1) + \frac{g(\gamma, y)}{y^2}
\]

Substituting the Mercator series expansion for the \(\ln (z + 1) \) term and the binomial expansion of \(\sqrt{z + 1} \)

\[
\sqrt{z + 1} = 1 + \frac{z}{2} - \frac{z^2}{8} + \frac{z^3}{16} - \frac{5z^4}{128} ...
\]

gives

\[
z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} ... = 4[1 + \frac{z}{2} - \frac{z^2}{8} + \frac{z^3}{16} - \frac{5z^4}{128} ...] - 3 - 1 + \frac{g(\gamma, y)}{y^2}
\]

and therefore

\[
g(\gamma, y) = y^2\left(\frac{z^3}{12} - \frac{3z^4}{32} + ...\right)
\]

the lack of terms below \(z^3 \) is consistent with our assumption of equal variances on the Gaussian approximation. Substituting back our original variables gives

\[
g(x, \lambda) = \frac{(\lambda - x)^3}{12x^2} - \frac{3(\lambda - x)^4}{32x^3} + ...
\]

In this case, the symmetry of Eq. ?? means that \(G = G' \). This demonstrates that errors on both the Poisson approximation and the distribution of \(\lambda \) have equivalent errors \(g' = g \).

3 Conclusions

Comparison of \(g(x, \lambda) \) with \(h(x, \lambda) \) demonstrates the superiority of the new approximation for small \(x \) and that the leading order (cubic) terms differ by a factor of two for large \(x \). Comparison with \(h' \) demonstrates a consistent improvement of a factor of 4.

There are several practical implications of this result. The first is in the construction of \(\chi^2 \) similarity measures, which rely on the approximation of a Poisson by a Gaussian, such as

\[
\chi^2 = \sum_i \frac{(h_i - t_i)^2}{2t_i} \quad \text{and} \quad \chi^2 = \sum_i \frac{(h_i - k_i)^2}{2(h_i + k_i)}
\]

where \(h_i \) and \(k_i \) are frequency measures such as histogram values and \(t_i \) is the theoretical estimate. These functions are better estimated (particularly for small values of \(h_i \) and \(k_i \)) as

\[
\chi^2 = 2 \sum_i (\sqrt{h_i} - \sqrt{t_i})^2 \quad \text{and} \quad \chi^2 = 2 \sum_i (\sqrt{h_i} - \sqrt{k_i})^2
\]

These results for statistical similarity measures also extend to measures for probability similarity, with the Bhat-tacharyya (and equivalent Matusita) measure being most suitable for the comparison of highly dissimilar probability densities (where the uniform variance of the new measure makes Euclidean difference measures appropriate).

\[
B = \int \sqrt{P_1(x)P_2(x)}dx
\]

In addition, the Poisson distribution can be approximated better by a function of the form

\[
P' = \frac{1}{\sqrt{2\pi x}} e^{-2(\sqrt{x} - \sqrt{\lambda})^2}
\]

than the standard Gaussian with width equal to the mean.

Finally, a Gaussian random variable \(x \) with variance equal to 1/4 and mean \(\gamma \) can be used to approximate a Poisson random variable of mean \(\gamma^2 \) by squaring \((x^2) \), or conversely the variance of a Poisson random variate can be stabilised at 1/4 by applying a square-root transform.