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Abstract

It is well known that the product and the convolution of Gaussian probability density functions (PDFs)
are also Gaussian functions. This document provides proofs of this for several cases; the product of
two univariate Gaussian PDFs, the product of an arbitrary number of univariate Gaussian PDFs, the
product of an arbitrary number of multivariate Gaussian PDFs, and the convolution of two univari-
ate Gaussian PDFs. These results are useful in calculating the effects of smoothing applied as an
intermediate step in various algorithms.

1 The Product of Two Univariate Gaussian PDFs

Let f(x) and g(x) be Gaussian PDFs with arbitrary means µf and µg and standard deviations σf and σg

f(x) =
1√
2πσf

e
−

(x−µf )2

2σ2
f and g(x) =

1√
2πσg

e
−

(x−µg)2

2σ2
g

Their product is

f(x)g(x) =
1

2πσfσg
e
−

(

(x−µf )2

2σ2
f

+
(x−µg)2

2σ2
g

)

Examine the term in the exponent

β =
(x− µf )

2

2σ2
f

+
(x− µg)

2

2σ2
g

Expanding the two quadratics and collecting terms in powers of x gives

β =
(σ2

f + σ2
g)x

2 − 2(µfσ
2
g + µgσ

2
f )x+ µ2

fσ
2
g + µ2

gσ
2
f

2σ2
fσ

2
g

Dividing through by the coefficient of x2 gives

β =
x2 − 2

µfσ
2
g+µgσ

2
f

σ2
f
+σ2

g
x+

µ2
fσ

2
g+µ2

gσ
2
f

σ2
f
+σ2

g

2
σ2
f
σ2
g

σ2
f
+σ2

g

This is again a quadratic in x, and so Eq. 2 is a Gaussian function. Compare the terms in Eq. 5 to a the usual
Gaussian form

P (x) =
1√
2πσ

e−
(x−µ)2

2σ2 =
1√
2πσ

e−
(x2

−2µx+µ2)

2σ2

Since a term ǫ that is independent of x can be added to complete the square in β, this is sufficent to complete the
proof in cases where the normalisation can be ignored. The product of two Gaussian PDFs is proportional to a
Gaussian PDF with a mean that is half the coefficient of x in Eq. 5 and a standard deviation that is the square
root of half of the denominator i.e.

σfg =

√

σ2
fσ

2
g

σ2
f + σ2

g

and µfg =
µfσ

2
g + µgσ

2
f

σ2
f + σ2

g



i.e. the variance σ2
fg is twice the harmonic mean of the individual variances σ2

f and σ2
g , and the mean µfg is the

sum of the individual means µf and µg weighted by their variances. In general, the product is not itself a PDF
as, due to the presence of the scaling factor, it will not have the correct normalisation.

The product f(x)g(x) can now be written in the usual Gaussian form directly, with an unknown scaling constant
(this may be sufficient in cases where renormalisation can be applied). Alternatively, proceeding from Eq. 5,
suppose that ǫ is the term required to complete the square in β i.e.

ǫ =

(

µfσ
2
g+µgσ

2
f

σ2
f
+σ2

g

)2

−
(

µfσ
2
g+µgσ

2
f

σ2
f
+σ2

g

)2

2σ2
f
σ2
g

(σ2
f
+σ2

g)

= 0

Adding this term to β gives

β =
x2 − 2x

µfσ
2
g+µgσ

2
f

σ2
f
+σ2

g
+
(

µfσ
2
g+µgσ

2
f

σ2
f
+σ2

g

)2

2σ2
f
σ2
g

(σ2
f
+σ2

g)

+

µ2
fσ

2
g+µ2

gσ
2
f

σ2
f
+σ2

g
−
(

µfσ
2
g+µgσ

2
f

σ2
f
+σ2

g

)2

2σ2
f
σ2
g

(σ2
f
+σ2

g)

After some manipulation, this reduces to

β =

(

x− µfσ
2
g+µgσ

2
f

σ2
f
+σ2

g

)2

2
σ2
f
σ2
g

σ2
f
+σ2

g

+
(µf − µg)

2

2(σ2
f + σ2

g)
=

(x− µfg)
2

2σ2
fg

+
(µf − µg)

2

2(σ2
f + σ2

g)

Substituting back into Eq. 2 gives

f(x)g(x) =
1

2πσfσg
exp

[

− (x− µfg)
2

2σ2
fg

]

exp

[

− (µf − µg)
2

2(σ2
f + σ2

g)

]

Multiplying by σfg/σfg and rearranging gives

=
1√

2πσfg

exp

[

− (x− µfg)
2

2σ2
fg

]

1
√

2π(σ2
f + σ2

g)
exp

[

− (µf − µg)
2

2(σ2
f + σ2

g)

]

Therefore, the product of two Gaussians PDFs f(x) and g(x) is a scaled Gaussian PDF

f(x)g(x) =
Sfg√
2πσfg

exp

[

− (x− µfg)
2

2σ2
fg

]

where

σfg =

√

σ2
fσ

2
g

σ2
f + σ2

g

and µfg =
µfσ

2
g + µgσ

2
f

σ2
f + σ2

g

(1)

and the scaling factor S is itself a Gaussian PDF on both µf and µg with standard deviation
√

σ2
f + σ2

g

Sfg =
1

√

2π(σ2
f + σ2

g)
exp

[

− (µf − µg)
2

2(σ2
f + σ2

g)

]

These can be written more conveniently as

1

σ2
fg

=
1

σ2
f

+
1

σ2
g

, µfg =

(

µf

σ2
f

+
µg

σ2
g

)

σ2
fg and Sfg =

1
√

2π
σ2
f
σ2
g

σ2
fg

exp

[

−1

2

(µf − µg)
2

σ2
fσ

2
g

σ2
fg

]

(2)

It is much easier to generate a proof by induction for the scaling factor of products of larger numbers of Gaussians
if it is written in the form of a sum of terms, each of which involves a single subscript i.e. the parameters of a
single Gaussian PDF. Appendix A provides the necessary proof, giving

Sfg =
1

√

2π
σ2
f
σ2
g

σ2
fg

exp

[

−1

2

(

µ2
f

σ2
f

+
µ2
g

σ2
g

−
µ2
fg

σ2
fg

)]

(3)
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2 The Product of n Univariate Gaussian PDFs

Let N(µ, σ) represent a Gaussian PDF with mean µ and standard deviation σ. Let subscript i refer to an
individual Gaussian PDF in a product of n univariate Gaussian PDFs. Furthermore, let the subscript i = 1...n
refer to the parameters of the distribution that is the product n individual Gaussian PDFs and subscripts of the
form i = (1...n − 1)n refer to the parameters of a distribution that is the product of two Gaussian PDFs, one of
which is itself the product of n − 1 Gaussian PDFs. Therefore, the results from Section 1 can be applied to the
first two Gaussian PDFs in the product of n Gaussian PDFs to produce a Gaussian PDF and a scaling factor. The
remaining n− 2 PDFs can then be introduced iteratively using the same expressions i.e.

n
∏

i=1

N(µi, σi) = Si=1...2N(µi=1...2, σi=1...2)

n
∏

i=3

N(µi, σi)

= Si=1...2S(i=1...2)3N(µ(i=1...2)3, σ(i=1...2)3)
n
∏

i=4

N(µi, σi) = ...

= Si=1...2...S(...((i=1...2)3)...n)N(µ(...((i=1...2)3)...n), σ(...((i=1...2)3)...n)) = Si=1...nN(µi=1...n, σi=1...n)

Applying the expression for the standard deviation from Eq. 2 iteratively gives

1

σ2
i=1...n

=
1

σ2
i=1...n−1

+
1

σ2
n

=
1

σ2
i=1...n−2

+
1

σ2
n−1

+
1

σ2
n

= ... =
n
∑

i=1

1

σ2
i

(4)

Similarly, the mean is given by

µi=1...n =

[

µi=1...n−1

σ2
i=1...n−1

+
µn

σ2
n

]

σ2
i=1...n =

[(

µi=1...n−2

σ2
i=1...n−2

+
µn−1

σ2
n−1

)

σ2
i=1...n−1

σ2
i=1...n−1

+
µn

σ2
n

]

σ2
i=1...n

=

[

µi=1...n−2

σ2
i=1...n−2

+
µn−1

σ2
n−1

+
µn

σ2
n

]

σ2
i=1...n = ... =

[

n
∑

i=1

µi

σ2
i

]

σ2
i=1...n (5)

By inspection of Eq. 3, state the form

Si=1...n =
1

(2π)(n−1)/2

√

σ2
i=1...n
∏n

i=1 σ
2
i

exp

[

−1

2

(

n
∑

i=1

µ2
i

σ2
i

− µ2
i=1...n

σ2
i=1...n

)]

(6)

for the scaling factor. Similarly, using Eq. 4 to manipulate some of the standard deviation terms,

S(i=1...n)(n+1) =
1

(2π)(1/2)

√

σ2
i=1...n+1

σ2
i=1...nσ

2
n+1

exp

[

−1

2

(

µ2
i=1...n

σ2
i=1...n

+
µ2
n+1

σ2
n+1

−
µ2
(i=1...n)(n+1)

σ2
(i=1...n)(n+1)

)]

The scaling factor is the product of individual scaling factors for each pairwise multiplication, so

Si=1...n+1 = Si=1...nS(i=1...n)(n+1) =

1

(2π)n/2

√

σ2
i=1...n
∏n

i=1 σ
2
i

σ2
i=1...n+1

σ2
i=1...nσ

2
n+1

exp

[

−1

2

(

n
∑

i=1

µ2
i

σ2
i

+
µ2
n+1

σ2
n+1

−
µ2
(i=1...n)(n+1)

σ2
(i=1...n)(n+1)

)]

This gives two terms to deal with: First, the standard devation term

∏n
i=1 σ

2
i

σ2
i=1...n

σ2
i=1...nσ

2
n+1

σ2
i=1...n+1

=
σ2
n+1

∏n
i=1 σ

2
i

σ2
i=1...n+1

=

∏n+1
i=1 σ2

i

σ2
i=1...n+1

Second, the term in the exponent; using Eq. 5 gives

µ2
(i=1...n)(n+1)

σ2
(i=1...n)(n+1)

=
µ2
i=1...n

σ2
i=1...n

+
µ2
n+1

σ2
n+1

=

n
∑

i=1

µ2
i

σ2
i

+
µ2
n+1

σ2
n+1

=

n+1
∑

i=1

µ2
i

σ2
i

=
µ2
i=1...n+1

σ2
i=1...n+1

Therefore
n
∑

i=1

µ2
i

σ2
i

+
µ2
n+1

σ2
n+1

−
µ2
(i=1...n)(n+1)

σ2
(i=1...n)(n+1)

=

n+1
∑

i=1

µ2
i

σ2
i

−
µ2
(i=1...n+1)

σ2
(i=1...n+1)
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So

Si=1...n+1 =
1

(2π)n/2

√

σ2
i=1...n+1
∏n+1

i=1 σ2
i

exp

[

−1

2

(

n+1
∑

i=1

µ2
i

σ2
i

− µ2
i=1...n+1

σ2
i=1...n+1

)]

which, together with Eq. 3, constitutes a proof by induction of Eq. 6. As with the product of two univariate
Gaussian PDFs, the scaling factor is a Gaussian function. However, it is not a PDF, as it does not have the correct
normalisation.

3 The Product of n Multivariate Gaussian PDFs

The multivariate Gaussian PDF can be written as

p(x) =
1

(2π)d/2
√

|V |
exp

[

−1

2
(x− µ)TV −1(x− µ)

]

where d is the dimensionality of x, µ is the d-dimensional mean vector, and V is the d-by-d dimensional covariance
matrix; this document adopts the standard notation of using bold face symbols to represent vectors and matrices.
The Gaussian PDF can also be written in canonical notation as

p(x) = exp

[

ζ + ηTx− 1

2
xT

Λx

]

(7)

where

Λ = V −1 , η = V −1µ and ζ = −1

2

(

d log 2π − log|Λ|+ ηT
Λ

−1η
)

So the product of n Gaussian PDFs i = 1...n is

n
∏

i=1

pi(x) = exp



ζi=1...n +

(

n
∑

i=1

ηi

)T

x− 1

2
xT

(

n
∑

i=1

Λi

)

x





where

ζi=1...n =

n
∑

i=1

ζi = −1

2

(

nd log 2π −
n
∑

i=1

log |Λi|+
n
∑

i=1

ηT
i Λ

−1
i ηi

)

So
n
∏

i=1

pi(x) = exp



ζi=1...n + ζn − ζn +

(

n
∑

i=1

ηi

)T

x− 1

2
xT

(

n
∑

i=1

Λi

)

x





= exp(ζi=1...n − ζn)exp

[

ζn + ηT
nx− 1

2
xT

Λnx

]

(8)

where

Λn =

n
∑

i=1

Λi , ηn =

n
∑

i=1

ηi

and

ζn = −1

2

(

d log 2π − log|Λn|+ ηT
nΛ

−1
n ηn

)

(9)

Comparing Eqs. 7, 9 and 8 shows that the result is, as in the previous sections, a scaled Gaussian PDF over x

with a mean vector and covariance matrix given by

V −1
n =

n
∑

i=1

V −1
i and V −1

n µn =

n
∑

i=1

V −1
i µi

The scaling factor is again a Gaussian function.
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4 The Convolution of Two Univariate Gaussian PDFs

We wish to find the convolution of two Gaussian PDFs

f(x) =
1√
2πσf

e
−

(x−µf )2

2σ2
f and g(x) =

1√
2πσg

e
−

(x−µg)2

2σ2
g

in the most general case i.e. non-identical means. The convolution of two functions f(t) and g(t) over a finite
range1 is defined as

∫ x

0

f(x− τ)g(τ)dτ = f ⊗ g

However, the usual approach is to use the convolution theorem [2],

F−1[F (f(x))F (g(x))] = f(x)⊗ g(x)

where F is the Fourier transform

F (f(x)) =

∫ ∞

−∞

f(x)e−2πikx dx

and F−1 is the inverse Fourier transform

F−1(F (k)) =

∫ ∞

−∞

F (k)e2πikx dk

Using the transformation
x′ = x− µf

the Fourier transform of f(x) is given by

F (f(x)) =
1√
2πσf

∫ ∞

−∞

e
− x′2

2σ2
f e−2πik(x′−µf ) dx′ =

e−2πikµf

√
2πσf

∫ ∞

−∞

e
− x′2

2σ2
f e−2πikx′

dx′

Using Euler’s formula [2],
e−iθ = cos θ − i sin θ

we can split the term in ex
′

to give

F (f(x)) =
e−2πikµf

√
2πσf

∫ ∞

−∞

e
− x′2

2σ2
f [cos(2πkx′)− i sin(2πkx′)] dx′

The term in sin (x′) is odd and so its integral over all space will be zero, leaving

F (f(x)) =
e−2πikµf

√
2πσf

∫ ∞

−∞

e
− x′2

2σ2
f cos(2πkx′) dx′

This integral is given in standard form in [1]

∫ ∞

0

e−at2 cos (2xt) dt =
1

2

√

π

a
e−

x2

a

and so
F (f(x)) = e−2πikµf e−2π2σ2

fk
2

The second term in this expression is a Gaussian PDF in k: the Fourier transform of a Gaussian PDF is another
Gaussian PDF. The first term is a phase term accounting for the mean of f(x) i.e. its offset from zero. The Fourier
transform of g(x) will give a similar expression, and so

F (f(x))F (g(x)) = e−2πikµf e−2π2σ2
fk

2

e−2πikµge−2π2σ2
gk

2

= e−2πik(µf+µg)e−2π2(σ2
f+σ2

g)k
2

1In practice, convolutions are more often performed over an infinite range∫
∞

−∞

f(x− τ)g(τ)dτ = f ⊗ g
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Comparing Eq. 25 to Eq. 24, we can see that it is the Fourier transform of a Gaussian PDF with mean and
standard deviation

µf⊗g = µf + µg and σf⊗g =
√

σ2
f + σ2

g

and therefore, since the Fourier transform is invertible,

Pf⊗g(x) = F−1[F (f(x))F (g(x))] =
1

√

2π(σ2
f + σ2

g)
e
−

(x−(µf+µg))2

2(σ2
f
+σ2

g)

It may be worth noting a general result at this point; the area under a convolution is equal to the product of the
areas under the factors

∫ ∞

−∞

(f ⊗ g)dt =

∫ ∞

−∞

[∫ ∞

−∞

f(u)g(t− u)du

]

dt

=

∫ ∞

−∞

f(u)

[∫ ∞

−∞

g(t− u)dt

]

du

[∫ ∞

−∞

f(u)du

] [∫ ∞

−∞

g(t)dt

]

Therefore, the preservation of the normalisation when convolving PDFs i.e. the fact that the convolution is also a
PDF, normalised such that the area under the function is equal to unity, is a special case rather than being true
in general.

5 Summary

It is well known that the product and the convolution of a pair of Gaussian PDFs are also Gaussian. In the case
of the product of two univariate Gaussian PDFs N(µf , σf ) and N(µg, σg), the result is a scaled Gaussian PDF
where the scaling factor is itself a Gaussian PDF on both µf and µg

N(µf , σf )N(µg, σg) =
Sfg√
2πσfg

exp

[

− (x− µfg)
2

2σ2
fg

]

where
1

σ2
fg

=
1

σ2
f

+
1

σ2
g

, µfg =

(

µf

σ2
f

+
µg

σ2
g

)

σ2
fg

and Sfg =
1

√

2π
σ2
f
σ2
g

σ2
fg

exp

[

−1

2

(µf − µg)
2

σ2
fσ

2
g

σ2
fg

]

It should be noted that this result is not the PDF of the product of two Gaussian random variates; in that case,
the product normal distribution applies.

The product of n univariate Gaussian PDFs is given by

n
∏

i=1

N(µi, σi) =
Si=1...n

√

2πσ2
i=1...n

exp

[

− (x− µi=1...n)
2

2σ2
i=1...n

]

where
1

σ2
i=1...n

=

n
∑

i=1

1

σ2
i

, µi=1...n =

[

n
∑

i=1

µi

σ2
i

]

σ2
i=1...n

and Si=1...n =
1

(2π)(n−1)/2

√

σ2
i=1...n
∏n

i=1 σ
2
i

exp

[

−1

2

(

n
∑

i=1

µ2
i

σ2
i

− µ2
i=1...n

σ2
i=1...n

)]

i.e. is a Gaussian PDF scaled by a Gaussian function.

The product of n multivariate Gaussian PDFs is given by

n
∏

i=1

N(µi,V
−1
i ) = exp(ζi=1...n − ζn)exp

[

ζn + ηT
nx− 1

2
xT

Λnx

]

where

Λi = V −1
i , ηi = V −1

i µi , Λn =

n
∑

i=1

Λi , ηn =

n
∑

i=1

ηi ,

ζn = −1

2

(

d log 2π − log|Λn|+ ηT
nΛ

−1
n ηn

)

and
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ζi=1...n =
n
∑

i=1

ζi = −1

2

(

nd log 2π −
n
∑

i=1

log |ηi|+
n
∑

i=1

ηT
i Λ

−1
i ηi

)

i.e. a Gaussian PDF scaled by a Gaussian function.

The convolution of two Gaussian PDFs is a Gaussian PDF with mean and standard deviation

µf⊗g = µf + µg and σf⊗g =
√

σ2
f + σ2

g

These results can be useful in a number of applications; for example, the convolution of Gaussian distributions
freqently occurs in smoothing applied as an intermadiate step in various machine vision algorithms. Products of
Gaussian PDFs may occur during the application of Bayes theorem, and in some problems related to Gaussian
processes.
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A Rewriting the Scaling Factor

Using Eq. 4 and 5

µ2
i=1...n

σ4
i=1...n

=

(

n
∑

i=1

µi

σ2
i

)2

=

n
∑

i=1

µ2
i

σ4
i

+ 2

n−1
∑

i=1

n
∑

j=i+1

µiµj

σ2
i σ

2
j

So

2

n−1
∑

i=1

n
∑

j=i+1

µiµj

σ2
i σ

2
j

=
µ2
i=1...n

σ4
i=1...n

−
n
∑

i=1

µ2
i

σ4
i

The terms in the exponent of the scaling factor for the product of univariate Gaussians take the form

n−1
∑

i=1

n
∑

j=i+1

(µi − µj)
2

σ2
i σ

2
j

σ2
i=1...n =

n−1
∑

i=1

n
∑

j=i+1

(

µ2
i

σ2
i σ

2
j

− 2µiµj

σ2
i σ

2
j

+
µ2
j

σ2
i σ

2
j

)

σ2
i=1...n

which, substituting the above expression for the cross term,

=

n−1
∑

i=1

n
∑

j=i+1

(

µ2
i

σ2
i σ

2
j

σ2
i=1...n +

µ2
j

σ2
i σ

2
j

σ2
i=1...n

)

+

n
∑

i=1

µ2
i

σ4
i

σ2
i=1...n − µ2

i=1...n

σ4
i=1...n

σ2
i=1...n

=

n−1
∑

i=1

n
∑

j=i+1

µ2
i

(

σ2
i=1...n

σ2
i σ

2
j

+
σ2
i=1...n

σ4
i

)

− µ2
i=1...n

σ2
i=1...n

=

n
∑

i=1

(

µ2
i

σ2
i

)

− µ2
i=1...n

σ2
i=1...n

8



Note: Appendices B and C are an older version of the derivation for the product of n univariate Gaussian PDFs;
they do not use the manipulation given in Appendix A and so are considerably more complicated. The aim here
was to illustrate the derivation using the proof for three Gaussian PDFs, and then to replicate each step with
n Gaussian PDFs. However, these derivations are made redundant by the simpler versions given in the main
document.

B The Product of Three Univariate Gaussian PDFs

Since the product of two Gaussian PDFs is a scaled Gaussian PDF, the above proof can be extended to give the
product of larger numbers of Gaussian PDFs. We adopt the following notation: N(µ, σ) denotes a Gausian PDF
with mean µ and standard deviation σ; subscripts f , g, h etc. indicate the parameters of individual Gaussian
PDFs in the product; subscripts e.g. fg indicate the parameters of the products of those distributions; subscripts
e.g. (fg)h indicate the parameters of the product of the distribution h with a distribution that is itself the product
of the distributions f and g. Therefore, the product of three Gaussian PDFs is

N(µf , σf )N(µg, σg)N(µh, σh)

= SfgN(µfg, σfg)N(µh, σh)

= SfgS(fg)hN(µ(fg)h, σ(fg)h)

Defining
SfghN(µfgh, σfgh) = SfgS(fg)hN(µ(fg)h, σ(fg)h) (10)

we have
Sfgh = SfgS(fg)h , µfgh = µ(fg)h and σfgh = σ(fg)h

Since the expressions for the mean and standard deviation in Equation 2 are expressed as the sums over individual
terms that feature only the parameters of a single distribution f , g, they can be extended to multiple distributions
easily

1

σ2
fgh

=
1

σ2
(fg)h

=
1

σ2
fg

+
1

σ2
h

=
1

σ2
f

+
1

σ2
g

+
1

σ2
h

(11)

and

µfgh = µ(fg)h =

(

µfg

σ2
fg

+
µh

σ2
h

)

σ2
(fg)h =

(

µf

σ2
f

+
µg

σ2
g

+
µh

σ2
h

)

σ2
fgh (12)

The scaling factor is given by

Sfgh = SfgS(fg)h =
1

√

2π(σ2
f + σ2

g)
exp

[

− (µf − µg)
2

2(σ2
f + σ2

g)

]

1
√

2π(σ2
fg + σ2

h)
exp

[

− (µfg − µh)
2

2(σ2
fg + σ2

h)

]

=
1

2π
√

(σ2
f + σ2

g)(σ
2
fg + σ2

h)
exp

[

−1

2

(

(µf − µg)
2

σ2
f + σ2

g

+
(µfg − µh)

2

σ2
fg + σ2

h

)]

This can be dealt with as two separate terms; first

(σ2
f + σ2

g)(σ
2
fg + σ2

h) = (σ2
f + σ2

g)(
σ2
fσ

2
g

σ2
f + σ2

g

+ σ2
h) = σ2

fσ
2
g + σ2

fσ
2
h + σ2

gσ
2
h

Second
(µf − µg)

2

σ2
f + σ2

g

+
(µfg − µh)

2

σ2
fg + σ2

h

=
(µf − µg)

2(σ2
fg + σ2

h) + (µfg − µh)
2(σ2

f + σ2
g)

(σ2
f + σ2

g)(σ
2
fg + σ2

h)

The denominator is the same as the first term, above, so only the numerator need be dealt with

M = (µf − µg)
2(σ2

fg + σ2
h) + (µfg − µh)

2(σ2
f + σ2

g)

Substituting the expressions for µfg and σfg from Eq. 1,

M = (µf − µg)
2σ2

h + (µf − µg)
2

σ2
fσ

2
g

σ2
f + σ2

g

+

[

µfσ
2
g + µgσ

2
f

σ2
f + σ2

g

− µh

]2

(σ2
f + σ2

g)

9



One approach is expand the expression fully and then pair all of the terms to give an overall factor of σ2
f + σ2

g .
However, this is impractical as a route to a proof for the product of arbitrary numbers of Gaussians. Instead,

M = (µf − µg)
2σ2

h + (µf − µg)
2

σ2
fσ

2
g

σ2
f + σ2

g

+

[

µfσ
2
g + µgσ

2
f − µh(σ

2
f + σ2

g)
]2

(σ2
f + σ2

g)

= (µf − µg)
2σ2

h + (µf − µg)
2

σ2
fσ

2
g

σ2
f + σ2

g

+

[

(µf − µh)σ
2
g + (µg − µh)σ

2
f

]2

σ2
f + σ2

g

= (µf − µg)
2σ2

h + (µf − µg)
2

σ2
fσ

2
g

σ2
f + σ2

g

+
(µf − µh)

2σ4
g

σ2
f + σ2

g

+ 2(µf − µh)(µg − µh)
σ2
fσ

2
g

σ2
f + σ2

g

+
(µg − µh)

2σ4
f

σ2
f + σ2

g

Now, observe that

(A−B)2 + 2(A− C)(B − C) = A2 − 2AB +B2 + 2AB − 2AC − 2BC + 2C2

= A2 − 2AC + C2 +B2 − 2BC + C2 = (A− C)2 + (B − C)2 (13)

Therefore

(µf − µg)
2

σ2
fσ

2
g

σ2
f + σ2

g

+ 2(µf − µh)(µg − µh)
σ2
fσ

2
g

σ2
f + σ2

g

= (µf − µh)
2

σ2
fσ

2
g

σ2
f + σ2

g

+ (µg − µh)
2

σ2
fσ

2
g

σ2
f + σ2

g

and so

M = (µf − µg)
2σ2

h +
(µf − µh)

2σ4
g

σ2
f + σ2

g

+
(µg − µh)

2σ4
f

σ2
f + σ2

g

+ (µf − µh)
2

σ2
fσ

2
g

σ2
f + σ2

g

+ (µg − µh)
2

σ2
fσ

2
g

σ2
f + σ2

g

= (µf − µg)
2σ2

h + (µf − µh)
2
σ4
g + σ2

fσ
2
g

σ2
f + σ2

g

+ (µg − µh)
2
σ4
f + σ2

fσ
2
g

σ2
f + σ2

g

= (µf − µg)
2σ2

h + (µf − µh)
2σ2

g + (µg − µh)
2σ2

f

Collecting terms, this gives

Sfgh =
1

2π
√

σ2
fσ

2
g + σ2

fσ
2
h + σ2

gσ
2
h

exp

[

−1

2

(µf − µg)
2σ2

h + (µf − µh)
2σ2

g + (µg − µh)
2σ2

f

σ2
fσ

2
g + σ2

fσ
2
h + σ2

gσ
2
h

]

which can be written more conveniently as

Sfgh =
1

2π

√

σ2
f
σ2
gσ

2
h

σ2
fgh

exp

[

−1

2

(

(µf − µg)
2

σ2
fσ

2
g

+
(µf − µh)

2

σ2
fσ

2
h

+
(µg − µh)

2

σ2
gσ

2
h

)

σ2
fgh

]

(14)

Therefore, the product of three Gaussian PDFs is a scaled Gaussian PDF

f(x)g(x)h(x) =
Sfgh√
2πσfgh

exp

[

− (x− µfgh)
2

2σ2
fgh

]

where σfgh, µfgh and Sfgh are given by Eqs. 11, 12 and 14 respectively.

As in Section 1, the scaling factor can be rewritten using Appendix A to give

Sfgh =
1

2π

√

σ2
f
σ2
gσ

2
h

σ2
fgh

exp

[

−1

2

(

µ2
f

σ2
f

+
µ2
g

σ2
g

+
µ2
h

σ2
h

−
µ2
fgh

σ2
fgh

)]

10



C The Product of n Univariate Gaussian PDFs

Let subscript i refer to an individual Gaussian PDF in a product of n univariate Gaussian PDFs. Based on
the derivations in Sections 1 and B, it is clear that the product is also a Gaussian PDF, multiplied by a scaling
factor. The notation used in Section B is extended, so that the subscript i = 1...n refers to the parameters of the
distribution that is the product n individual Gaussian PDFs and subscript i = (1...n−1)n refers to the parameters
of a distribution that is the product of two Gaussian PDFs, one of which is itself the product of n − 1 Gaussian
PDFs. In addition, define

αn =
n
∑

i=1









n
∏

j=1
j 6=i

σ2
i









and γn =
n
∏

i=1

σ2
i

By inspection of the results for the products of two and three Gaussian PDFs, state

n
∏

i=1

N(µi, σi) =
Si=1...n

√

2πσ2
i=1...n

e
−

(x−µi=1...n)2

2σ2
i=1...n

where
1

σ2
i=1...n

=

n
∑

i=1

1

σ2
i

or σ2
i=1...n =

γn
αn

, µi=1...n =

[

n
∑

i=1

µi

σ2
i

]

σ2
i=1...n

and

Si=1...n =
1

√

(2π)n−1αn

exp



−σ2
i=1...n

2





n−1
∑

i=1

n
∑

j=i+1

(µi − µj)
2

σ2
i σ

2
j







 (15)

The above expressions can be proved by observing that, following Eq. 10,

Si=1...nN(µi=1...n, σi=1...n) = Si=1...n−1N(µi=1...n−1, σi=1...n−1)N(µn, σn)

= Si=1...n−1S(i=1...n−1)nN(µi=1...n, σi=1...n) (16)

Therefore, using Eq. 2

1

σ2
i=1...n

=
1

σ2
i=1...n−1

+
1

σ2
n

and µi=1...n =

(

µi=1...n−1

σ2
i=1...n−1

+
µn

σ2
n

)

σ2
i=1...n

Eq. 2 can then be substituted to expand σ2
i=1...n−1 into σ2

i=1...n−2 and σ2
n−1, and µi=1...n−1 into µi=1...n−2 and

µn−1; repeating this gives

1

σ2
i=1...n

=
1

σ2
i=1...n−1

+
1

σ2
n

=
1

σ2
i=1...n−2

+
1

σ2
n−1

+
1

σ2
n

= ... =

n
∑

i=1

1

σ2
i

Q.E.D.

µi=1...n =

[

µi=1...n−1

σ2
i=1...n−1

+
µn

σ2
n

]

σ2
i=1...n =

[(

µi=1...n−2

σ2
i=1...n−2

+
µn−1

σ2
n−1

)

σ2
i=1...n−1

σ2
i=1...n−1

+
µn

σ2
n

]

σ2
i=1...n

=

[

µi=1...n−2

σ2
i=1...n−2

+
µn−1

σ2
n−1

+
µn

σ2
n

]

σ2
i=1...n = ... =

[

n
∑

i=1

µi

σ2
i

]

σ2
i=1...n Q.E.D.

Eq. 15 can be written using α as

Si=1...n =
1

√

(2π)n−1αn

exp






−1

2







n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
k













1

αn







Similarly, Eq. 2 gives the scaling factor for the product of N(µi=1...n, σi=1...n) and N(µn, σn) as

S(i=1...n)n+1 =
1

√

2π(σ2
i−1...n + σ2

n+1)
exp

[

−1

2

(µi=1...n − µn+1)
2

σ2
i=1...n + σ2

n+1

]

11



Therefore, the aim here is to show that

Si=1...n+1 =
1

√

(2π)nαn(σ2
i−1...n + σ2

n+1)
exp−1

2













n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
k













1

αn
+

(µi=1...n − µn+1)
2

σ2
i=1...n + σ2

n+1







The standard deviation term is

αn(σ
2
i−1...n + σ2

n+1) = αnσ
2
i−1...n + αnσ

2
n+1 = γn + αnσ

2
n+1 = αn+1

The exponential term, ignoring the −1/2, is







n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
k













1

αn
+

(µi=1...n − µn+1)
2

σ2
i=1...n + σ2

n+1

=

(

∑n−1
i=1

∑n
j=i+1

[

(µi − µj)
2
∏n

k=1
k 6=i,j

σ2
k

])

(σ2
i=1...n + σ2

n+1) + (µi=1...n − µn+1)
2
αn

(σ2
i=1...n + σ2

n+1)αn

The denominator is, as expected, the standard deviation term that was dealt with above; ignore this, and let the
numerator be called M

M =







n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
k












(σ2

i=1...n + σ2
n+1) + (µi=1...n − µn+1)

2
αn

=
n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
k






σ2
i=1...n+

n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
k






σ2
n+1+

[(

n
∑

i=1

µi

σ2
i

)

σ2
i=1...n − µn+1

]2

αn

Focussing on the last of these three terms

αn

[(

n
∑

i=1

µi

σ2
i

)

σ2
i=1...n − µn+1

]2

= αn

[(

n
∑

i=1

µi

σ2
i

)

γ2
i=1...n

α2
i=1...n

− µn+1

]2

=
1

αn









n
∑

i=1









µi

n
∏

j=1
j 6=i

σ2
j









− α2
i=1...nµn+1









2

=
1

αn









n
∑

i=1









µi

n
∏

j=1
j 6=i

σ2
j









−
n
∑

i=1









µn+1

n
∏

j=1
j 6=i

σ2
j

















2

=
1

αn









n
∑

i=1









(µi − µn+1)
n
∏

j=1
j 6=i

σ2
j

















2

=
1

αn









n
∑

i=1









(µi − µn+1)
2

n
∏

j=1
j 6=i

σ4
j









+ 2
n−1
∑

i=1

n
∑

j=i+1






(µi − µn+1)(µj − µn+1)

n
∏

k=1

σ2
k

n
∏

l=1
l 6=i,j

σ2
l















However,
∏n

k=1 σ
2
k

αn
= σ2

i=1...n

so, recombining this with the first two terms of M gives

M =

n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
kσ

2
n+1






+

n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
k






σ2
i=1...n+

1

αn

n
∑

i=1









(µi − µn+1)
2

n
∏

j=1
j 6=i

σ4
j









+ 2

n−1
∑

i=1

n
∑

j=i+1






(µi − µn+1)(µj − µn+1)

n
∏

k=1
k 6=i,j

σ2
k






σ2
i=1...n

12



Applying Eq. 13 to the second and fourth terms gives

n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
kσ

2
n+1






+

1

αn

n
∑

i=1









(µi − µn+1)
2

n
∏

j=1
j 6=i

σ4
j









+

n−1
∑

i=1

n
∑

j=i+1







(

(µi − µn+1)
2 + (µj − µn+1)

2
)

n
∏

k=1
k 6=i,j

σ2
k






σ2
i=1...n

=

n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
kσ

2
n+1






+

1

αn

n
∑

i=1

(

(µi − µn+1)
2 γ2

n

σ4
i

)

+

n−1
∑

i=1

n
∑

j=i+1









(

(µi − µn+1)
2 + (µj − µn+1)

2
)

n
∑

j=1
j 6=i

γn
σ2
i σ

2
j









σ2
i=1...n

=

n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
kσ

2
n+1






+

1

αn

n
∑

i=1

(

(µi − µn+1)
2 γ2

n

σ4
i

)

+

n
∑

i=1









(µi − µn+1)
2

n
∑

j=1
j 6=i

γn
σ2
i σ

2
j









σ2
i=1...n

=
n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
kσ

2
n+1






+

n
∑

i=1









(µi − µn+1)
2









γ2
n

αnσ4
i

+
n
∑

j=1
j 6=i

γnσ
2
i=1...n

σ2
i σ

2
j

















Now, examine

γ2
n

αnσ4
i

+

n
∑

j=1
j 6=i

γnσ
2
i=1...n

σ2
i σ

2
j

=
γ2
n

αn









1

σ4
i

+

n
∑

j=1
j 6=i

1

σ2
i σ

2
j









=
γ2
n

αn

n
∑

j=1

1

σ2
i σ

2
j

= σ2
i=1...nγn

1

σ2
i

n
∑

j=1

1

σ2
j

=
σi=1...n

σ2
i

=

n
∏

j=1
j 6=i

σ2
j

So,

M =
n−1
∑

i=1

n
∑

j=i+1






(µi − µj)

2
n
∏

k=1
k 6=i,j

σ2
kσ

2
n+1






+

n
∑

i=1









(µi − µn+1)
2

n
∏

j=1
j 6=i

σ2
j









=
n
∑

i=1

n+1
∑

j=i+1






(µi − µj)

2
n+1
∏

k=1
k 6=i,j

σ2
k







Collecting terms

Si=1...nS(i=1...n)n+1 =
1

√

(2π)nαn+1

exp



−σ2
i=1...n+1

2





n
∑

i=1

n+1
∑

j=i+1

(µi − µj)
2

σ2
i σ

2
j







 = Si=1...n+1 Q.E.D.
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