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Abstract

It is well known that the product and the convolution of Gaussian probability density functions (PDFs)
are also Gaussian functions. This document provides proofs of this for several cases; the product of
two univariate Gaussian PDFs, the product of an arbitrary number of univariate Gaussian PDF's, the
product of an arbitrary number of multivariate Gaussian PDFs, and the convolution of two univari-
ate Gaussian PDFs. These results are useful in calculating the effects of smoothing applied as an
intermediate step in various algorithms.

1 The Product of Two Univariate Gaussian PDF's

Let f(x) and g(z) be Gaussian PDFs with arbitrary means py and pg and standard deviations oy and o,
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Their product is

(T'—Mf)Q (m—ug)2
1 e*(TJfT

F@)g@) = 5 T
TOf0g
Examine the term in the exponent
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Expanding the two quadratics and collecting terms in powers of x gives
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Dividing through by the coefficient of 22 gives
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This is again a quadratic in z, and so Eq. 2 is a Gaussian function. Compare the terms in Eq. 5 to a the usual

Gaussian form
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Since a term € that is independent of x can be added to complete the square in 3, this is sufficent to complete the
proof in cases where the normalisation can be ignored. The product of two Gaussian PDFs is proportional to a
Gaussian PDF with a mean that is half the coefficient of x in Eq. 5 and a standard deviation that is the square
root of half of the denominator i.e.
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i.e. the variance JJ% o is twice the harmonic mean of the individual variances O’J% and 0527, and the mean jif, is the
sum of the individual means py and pg weighted by their variances. In general, the product is not itself a PDF

as, due to the presence of the scaling factor, it will not have the correct normalisation.

The product f(x)g(x) can now be written in the usual Gaussian form directly, with an unknown scaling constant
(this may be sufficient in cases where renormalisation can be applied). Alternatively, proceeding from Eq. 5,
suppose that € is the term required to complete the square in 3 i.e.
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Adding this term to 3 gives
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After some manipulation, this reduces to
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Substituting back into Eq. 2 gives
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Multiplying by of4/0¢, and rearranging gives
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Therefore, the product of two Gaussians PDFs f(z) and g(z) is a scaled Gaussian PDF
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and the scaling factor S is itself a Gaussian PDF on both iy and p, with standard deviation , /0? +o2
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These can be written more conveniently as
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It is much easier to generate a proof by induction for the scaling factor of products of larger numbers of Gaussians
if it is written in the form of a sum of terms, each of which involves a single subscript i.e. the parameters of a
single Gaussian PDF. Appendix A provides the necessary proof, giving
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2 The Product of n Univariate Gaussian PDF's

Let N(p,0) represent a Gaussian PDF with mean p and standard deviation o. Let subscript 4 refer to an
individual Gaussian PDF in a product of n univariate Gaussian PDFs. Furthermore, let the subscript ¢ = 1...n
refer to the parameters of the distribution that is the product n individual Gaussian PDFs and subscripts of the
form i = (1...n — 1)n refer to the parameters of a distribution that is the product of two Gaussian PDFs, one of
which is itself the product of n — 1 Gaussian PDFs. Therefore, the results from Section 1 can be applied to the
first two Gaussian PDFs in the product of n Gaussian PDF's to produce a Gaussian PDF and a scaling factor. The
remaining n — 2 PDFs can then be introduced iteratively using the same expressions i.e.
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Applying the expression for the standard deviation from Eq. 2 iteratively gives

Similarly, the mean is given by
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By inspection of Eq. 3, state the form
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for the scaling factor. Similarly, using Eq. 4 to manipulate some of the standard deviation terms,
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The scaling factor is the product of individual scaling factors for each pairwise multiplication, so
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This gives two terms to deal with: First, the standard devation term
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Second, the term in the exponent; using Eq. 5 gives
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which, together with Eq. 3, constitutes a proof by induction of Eq. 6. As with the product of two univariate
Gaussian PDFs, the scaling factor is a Gaussian function. However, it is not a PDF, as it does not have the correct

normalisation.

3 The Product of n Multivariate Gaussian PDF's

The multivariate Gaussian PDF can be written as

p(x) = %ex
(2m)42/[V]

where d is the dimensionality of x, p is the d-dimensional mean vector, and V is the d-by-d dimensional covariance
matrix; this document adopts the standard notation of using bold face symbols to represent vectors and matrices.
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The Gaussian PDF can also be written in canonical notation as
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7, 9 and 8 shows that the result is, as in the previous sections, a scaled Gaussian PDF over x

Comparing Egs.
with a mean vector and covariance matrix given by
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4 The Convolution of Two Univariate Gaussian PDF's

We wish to find the convolution of two Gaussian PDF's
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in the most general case i.e. non-identical means. The convolution of two functions f(¢) and g(t) over a finite
range! is defined as
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However, the usual approach is to use the convolution theorem [2],
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where F' is the Fourier transform
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and F~! is the inverse Fourier transform
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The term in sin (z’) is odd and so its integral over all space will be zero, leaving
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The second term in this expression is a Gaussian PDF in k: the Fourier transform of a Gaussian PDF is another
Gaussian PDF. The first term is a phase term accounting for the mean of f(x) i.e. its offset from zero. The Fourier
transform of g(z) will give a similar expression, and so
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n practice, convolutions are more often performed over an infinite range
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Comparing Eq. 25 to Eq. 24, we can see that it is the Fourier transform of a Gaussian PDF with mean and

standard deviation
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and therefore, since the Fourier transform is invertible,
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It may be worth noting a general result at this point; the area under a convolution is equal to the product of the
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Therefore, the preservation of the normalisation when convolving PDFs i.e. the fact that the convolution is also a
PDF, normalised such that the area under the function is equal to unity, is a special case rather than being true
in general.

5 Summary

It is well known that the product and the convolution of a pair of Gaussian PDF's are also Gaussian. In the case
of the product of two univariate Gaussian PDFs N(uf,0¢) and N(ug,04), the result is a scaled Gaussian PDF
where the scaling factor is itself a Gaussian PDF on both pf and pg
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It should be noted that this result is not the PDF of the product of two Gaussian random variates; in that case,
the product normal distribution applies.

The product of n univariate Gaussian PDFs is given by
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i.e. is a Gaussian PDF scaled by a Gaussian function.
The product of n multivariate Gaussian PDF's is given by
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i.e. a Gaussian PDF scaled by a Gaussian function.

The convolution of two Gaussian PDF's is a Gaussian PDF with mean and standard deviation

Ufog = Hf+ g and ofgy = 1/0? + 02

These results can be useful in a number of applications; for example, the convolution of Gaussian distributions
fregently occurs in smoothing applied as an intermadiate step in various machine vision algorithms. Products of
Gaussian PDFs may occur during the application of Bayes theorem, and in some problems related to Gaussian
processes.
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A Rewriting the Scaling Factor

Using Eq. 4 and 5
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The terms in the exponent of the scaling factor for the product of univariate Gaussians take the form
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Note: Appendices B and C are an older version of the derivation for the product of n univariate Gaussian PDFs;
they do not use the manipulation given in Appendix A and so are considerably more complicated. The aim here
was to illustrate the derivation using the proof for three Gaussian PDFs, and then to replicate each step with
n Gaussian PDFs. However, these derivations are made redundant by the simpler versions given in the main
document.

B The Product of Three Univariate Gaussian PDF's

Since the product of two Gaussian PDFs is a scaled Gaussian PDF, the above proof can be extended to give the
product of larger numbers of Gaussian PDFs. We adopt the following notation: N(u, o) denotes a Gausian PDF
with mean p and standard deviation o; subscripts f, g, h etc. indicate the parameters of individual Gaussian
PDF's in the product; subscripts e.g. fg indicate the parameters of the products of those distributions; subscripts
e.g. (fg)h indicate the parameters of the product of the distribution h with a distribution that is itself the product
of the distributions f and g. Therefore, the product of three Gaussian PDF's is
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Since the expressions for the mean and standard deviation in Equation 2 are expressed as the sums over individual

terms that feature only the parameters of a single distribution f, g, they can be extended to multiple distributions

easily
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This can be dealt with as two separate terms; first
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One approach is expand the expression fully and then pair all of the terms to give an overall factor of JJ% + 03.
However, this is impractical as a route to a proof for the product of arbitrary numbers of Gaussians. Instead,
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which can be written more conveniently as
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Therefore, the product of three Gaussian PDF's is a scaled Gaussian PDF

f(x)g(w)h(x) = \/257:2% exp l_W]

where o ¢gn, trgn and Sygp are given by Egs. 11, 12 and 14 respectively.

As in Section 1, the scaling factor can be rewritten using Appendix A to give

1 1 2 2 2 2
o "'f“;ﬁ 2\% 9 Oh Ofg
Tfgh

10



C The Product of n Univariate Gaussian PDF's

Let subscript i refer to an individual Gaussian PDF in a product of m univariate Gaussian PDFs. Based on
the derivations in Sections 1 and B, it is clear that the product is also a Gaussian PDF, multiplied by a scaling
factor. The notation used in Section B is extended, so that the subscript ¢ = 1...n refers to the parameters of the
distribution that is the product n individual Gaussian PDFs and subscript ¢ = (1...n — 1)n refers to the parameters
of a distribution that is the product of two Gaussian PDFs, one of which is itself the product of n — 1 Gaussian
PDFs. In addition, define
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By inspection of the results for the products of two and three Gaussian PDFs, state

n Sic1 ,Wilnﬂ
HN(Mian) — 772“'6 207_1 .
i=1 2M05_1
where
n n
L Lo o2 Tn i Z sl
= —3 i=l..m — —— 5 1=1...n — ) 1=1...n
Ui:l n i=1 U’L Qn i=1 Ui
and
—1 n
1 o2 n )2
it = e exp | <k (Y0 30 W (15)
n— < ~
(2m)"ay, i—1 j=ir1 7i9)
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Similarly, Eq. 2 gives the scaling factor for the product of N(pi=1.. n,0i=1..n) and N(un,0,) as

1 exp 1 (,Uz2 1..n /Ln+1)2

Voot L2 Tt ona

S(i:l...n)nJrl =

11



Therefore, the aim here is to show that
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The denominator is, as expected, the standard deviation term that was dealt with above; ignore this, and let the
numerator be called M
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Applying Eq. 13 to the second and fourth terms gives
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