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Last updated
04 / 03 / 2008

Imaging Science and Biomedical Engineering Division,
Medical School, University of Manchester,

Stopford Building, Oxford Road,
Manchester, M13 9PT.



Noise Filtering and Testing for MR Using a Multi-Dimensional Partial

Volume Model

N.A.Thacker, M. Pokrić and P.A. Bromiley

1 Abstract

One of the most common problems in image analysis is the estimation and removal of noise or other artefacts (e.g.
grey level quantisation) using spatial filters. Common techniques include Gaussian Filtering, Median Filtering and
Anisotropic Filtering. Though these techniques are quite common in the image processing literature they must be
used with great care on medical data, as it is very easy to introduce artifact into images due to spatial smoothing.
The use of such techniques is further restricted by the absence of ‘gold standard’ data against which to test the
behaviour of the filters. Following a general discussion of the equivalence of filtering techniques to likelihood based
estimation using an assumed model, this paper describes an approach to noise filtering in multi-dimensional data
using a partial volume data density model. The resulting data sets can then be taken as gold standard data for
spatial filtering techniques which use the information from single images. We demonstrate equivalence between the
results from this analysis and techniques for performance characterisation which do not require a ‘gold standard’.

2 Introduction

Noise filtering on any data involves the assumption of a specific image generation mechanism (or image model).
The process of Gaussian smoothing for example can be interpreted as consistent with a likelihood estimation of the
central value within a region. This is done on the assumption that the data within this region can be described by
some functional model with the expected grey level residuals being drawn from a Gaussian noise distribution with
variance inversely proportional to the spatial Gaussian weighting term. The specific form of the assumed model is
best understood by considering a more simplistic problem first.

Gaussian filtering removes high spatial frequency content from the structure of images. A less destructive approach
to noise filtering is based on the concept of anisotropic filtering, where the data is preferentially smoothed along
a direction selected in order to minimise the loss of spatial structure in the image. One particular variant of this
we call ‘Tangential Filtering’. Here, the tangential direction to the local image slope is computed and the data is
smoothed by taking the weighted average of points along this line situated on either side of the central value. It is
relatively straight forward to see that averaging of multiple values in this way assumes that the data can locally be
fitted to a 1D line and selection of the tangential direction results in the least destructive impact on edge structure.
In fact any anti-symmetric function will result in an appropriate central estimate, and this can be taken as the
most general assumption for the underlying image model at each point. We can also see that for an average of two
points the noise in the resulting image should be reduced by typically a factor of

√
2 of the original image noise 1.

Returning to Gaussian filtering, we can interpret this process as an averaging of multiple estimations of the central
value for any pair of pixels with equal weight in the Gaussian kernel. The class of functions for which this would
be an appropriate model would include Cartesian polynomials (expanded as a function of shifts (x, y)) from the
central location (x0, y0), either with no even terms, or at least exact cancellation of the magnitudes of even power
coefficients. For example:

I(x − x0, y − y0) = a + bx + cy + dxy + ex2 − ey2 + ...

Though the only global function for which the model would work correctly at every image location would be an
inclined plane. When described in this way it is easy to see the over-simplicity of this model in comparison to
the structures found in real medical images. It is this which results in the characteristic problems with Gaussian
filtering of image smoothing and the loss of sharp edge structures.

For particular applications of MR analysis, and in particular structural analysis, we would like to be able to assess
the performance of these filters, and their ability to give the best estimate of the noise free image. Unfortunately,
the only data which we generally have available with which to test these algorithms are simulated data based upon
a simplified model of image formation and tissue distribution (e.g. BRAINWEB [1, 2]). While we can say which
filter will perform best on this simulated data, we cannot know that the data under test is a good surrogate for all

1
√

3 if we also include the central value in the estimate.
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of the formation processes seen in real images or for the specific structures seen in the particular images we wish
to analyse.

As a direct contrast to spatial image filtering, which assumes specific forms of spatial correlation between grey
level values, multi-dimensional tissue segmentation algorithms rely instead upon corellations between multiple
measurements of the same physical location (voxel) using different imaging modalities. The typical approach
involves building a model not of spatial structure but of grey level density distribution. A common form of
noise removal which makes use of grey-level density distribution is the median filter, which can be considered
as a bootstrapped likelihood estimator. While many authors have concentrated on the use of grey level density
estimation for tissue labelling, estimates of tissue volume proportion (as presented in our previous work [3]) can be
used to predict the original image content for each modality in the case of zero noise. The process is simply one of
using the estimated model parameters to generate the expected grey level values, using the linear equations implicit
in the segmentation. Thus multi-spectral segmentation techniques can be used as the basis for noise filtering.

Many readers may find the interpretation of filtering methods from a perspective of a model based estimation
process unusual. However, one advantage of this approach is that explicit identification of the assumed model
makes it possible to begin to consider testing the conformity of the data under analysis to the model. This is
something which has not generally been tested for spatial filtering approaches. We explain below how this can be
used to prevent noise removal in un-modelled parts of the data, i.e. pathology. In addition, we will demonstrate
how the results from multi-spectral noise filtering are usable as a gold standard for spatial filtering techniques.

3 Methods

We will assess the stability of the selected filtering schemes first using a Monte-Carlo approach. Here a small
quantity of noise is added to the input image and the relative change in output grey-level values is measured.
However, this technique is not sufficient as an evaluation, as it will not measure failure of the implicit filtering
model.

By interpreting each noise filtering technique as an estimation process we suggest that it is possible to assess the
validity of the filtering method by observing the number of grey-level values which are changed by more than
3 standard deviations of the estimated image noise, ie: a residual outlier measurement (ROM). To estimate the
image noise to set the scale of this measurement, we use a technique we call Local Noise Estimation (LNE). This is
based upon the observation that high order derivatives are heavily corrupted by image noise. On the assumption
of uniform independent noise we can use error propagation to predict the expected level of noise on any order of
spatial derivative. By measuring the width of the distribution of derivatives around the peak at zero we can get
an estimate of the original image noise by scaling with the appropriate error propagation factor. We use second
derivatives which means that the technique is also consistent with measuring the deviation from a purely linear
spatial grey-level model. 2

The Monte-Carlo assessment and the ROM measure complementary aspects of performance, the first giving an
indication of the best case noise filter on the assumption that the filter model is adequate and the second giving
an indication of how often this model is inappropriate. Importantly, neither technique requires a “gold standard”
to test against. Ideally, we wish to show that these techniques give a complete characterisation of the algorithm
performance and for this we will need a surrogate “gold standard”. We choose to use for this the Multi-Spectral
filtering method which will now be described.

Multi-dimensional Gaussian distributions are used to model the effects of both inherent tissue variability and
measurement noise for pure tissues. A multi-variate Gaussian distribution for multi-dimensional data g for each
pure tissue t is defined as

dt(g) = αte
− 1

2 (g−Mt)
T Ct(g−Mt)

where Mt is a mean tissue vector, Ct is the inverse of a covariance matrix and αt is a constant which gives unit
normalisation.

Using an assumption of a linear image formation process, whereby the total intensity level at each voxel results
from summation of different tissue fractions present at that particular voxel, the partial volume distribution can
be thought of as being composed of two triangular distributions convolved with a Gaussian (Tts(g) + Tst(g)).
Where Tts(g) is the local density estimate for tissue t generated by a partial voluming process with tissue s.
Assuming that tissue variability is more significant than the measurement processes, multi-dimensional partial

2Although this method will estimate the image noise well (within a few percent) for data with spatially uncorrelated noise, we
cannot use this technique to estimate noise following spatial filtering.
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volume distributions can be modelled along the line between two pure tissue means mt and ms:

dts(g) = βtsTts(h)e−(g−h.g/|h|)T Ch(g−h.g/|h|)

where the parameters for the given data g are:
h is a fractional distance between two centres of distribution [0 < h < 1]
h = (g − Ms)Ch(Mt − Ms)/|(Mt − Ms)Ch(Mt − Ms)|
Ch is an inverse covariance matrix: Ch = Cth + Cs(1 − h)
Tts(h) is the 1D partial volume distribution between pure tissues t and s.
βts is a constant which gives unit normalisation

The 1D partial volume distribution, Tts, obtained by convolving a triangular distribution normalised to 1
2 with

Gaussian distribution normalised to 1 (a derivation is given in Appendix 1)

Tts(x) = −kx + c

2
{erf(

x − b

σ
√

2
) − erf(

x − a

σ
√

2
)} − kσ√

2π
{exp−

(x−b)2

2σ2 − exp−
(x−a)2

2σ2 }. (1)

where:
x is a grey level value calculated as a normal projection of vector g onto line between two distribution means
k and c are the slope and intercept of the line which forms the triangle
a and b are the start and end points of an interval at which the triangular distribution has a non-zero value
σ is a standard deviation of a Gaussian function

The overall partial volume distribution is calculated as a product of a Gaussian function of the normal distance
(g − h.g/|h|) from two distribution centres and the 1D partial volume distribution Tts(h). Examples of the types
of distributions obtained from the model parameters of two images for three pure tissues and their partial volumes
are shown in Figure 1. It can be seen that pure tissue distribution models take the form of elliptical features, while
the partial volumes are shown as elongated structures between centres of distributions.

(a) (b)

Figure 1: An example of distributions generated from the model for two images (a) Pure tissue distributions (b)
Combined distributions of pure tissues and partial volumes between centres of pure tissues

Parameters of the model can be iteratively estimated using the Expectation Maximisation (EM) approach [5, 6].
EM is used to estimate the parameters by maximising the likelihood of the data distribution. This involves first
getting from the likelihood distributions defined above to a probability of a given tissue proportion given the data
P (t|gv). The conditional probability of a grey level being due to a certain mechanism n (either a pure or mixture
tissue component) can be calculated using Bayes theory, as follows:

P (n|g) =
dn(g)fn

∑

t(fO + dt(g)ft) +
∑

t

∑

s dts(g)fts

where fn, fO, ft and fts are effectively ”priors”, expressed here as frequencies (i.e. number of voxels) which belong
to a particular tissue type, pure tissues or partial volumes. Unknown tissues are accounted for in the Bayesian
formulation by including a fixed extra term fO for infrequently occurring outlier data [7] in total probability which
enables separation of pathological tissues.

Noise free estimates of the individual image grey-levels g′i can be calculated using

g′i = gi P (O|g) +
∑

t

git P (t|g) +
∑

t

∑

s

git P (ts|g)

Where git is the expected pure tissue grey level for image i. This formulation implicitly reverts to the original
image grey-level for outlier data (large P (O|g)). In addition, failure to model individual voxels can be identified
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by checking for consistency between the filtered image and original. In particular, any reconstructed grey-level
value which differs from the original by more than 3 standard deviation of the image noise can be said to be
inconsistent with the model. This value can then be replaced with the original value in order to preserve all
significant information present in the original image.

Finally, in order to use the results form the multi-spectral technique as gold standard there are a few issues which
must be addressed. The first is that multi-spectral filtering is expected to eliminate spatially distributed errors,
such as field in-homogeneity. Although these are expected to be small in our data (in comparison to intrinsic
image noise) they also vary between acquisitions and will bias comparisons of residual distributions. In order to
eliminate the majority of these effects we construct our pseudo-gold standard by removing a smooth estimate of
local difference between the multi-spectral reconstruction and the original image, (constructed using a 5 pixel S.D.
Gaussian kernel). Secondly, the multi-spectral noise filtering process removes noise in a tissue dependant manner
(also removing genuine tissue variability which cannot be interpreted as a partial volume process), so that residual
difference distributions are not simple Gaussians. Therefore we fit all residual distributions within 3 S.D. of the
estimated image noise with the sum of two Gaussians with the same mean but individual widths and normalisations
(A and B). It is the results of this fitting process which we wish to reconcile with the results from Monte-Carlo
and ROM quantification.

4 Results

Original and reconstructed images following co-registration and partial volume analysis are shown in Figure 2.

(a) Inversion Recovery Turbo Spin
Echo

(b) Variable Echo (PD) (c) Variable Echo (T2) (d) FLAIR

(e) Filtered IRTSE (f) Filtered VE (PD) (g) Filtered VE (T2) (h) Filtered FLAIR

Figure 2: Image Sequences and Partial Volume Filtered Counterparts

The noise level (σoriginal) in each image was estimated using the LNE technique. Tangential filtering was applied
by averaging over three pixels (one central and two either side). Gaussian filtering was for spatial filter with S.D.
of 1 pixel. Median filtering was over the local neighbourhood of 9 pixels. The Monte-Carlo stability analysis
estimates of the fraction of noise remaining after filtering is shown in Table 1. The numbers of voxels lying beyond
3 S.D. of the model (ROM) are listed in Table 1.

Following partial volume filtering the reconstructed images were corrected for low frequency spatial noise as de-
scribed in the methods section. The resulting images were then used as the basis for evaluation of spatial filtering
techniques applied to the original images (Table 2). Though the fits to the double Gaussian are less stable than
those from the Monte-Carlo the results confirm that for the central narrow component the widths of the residual
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distribution vary by amounts consistent with the prediction. In addition the proportion of the secondary Gaussian
components and secondary peak widths give an estimate of the number of failures. While the Gaussian filter
reduces the width of both the primary and the secondary Gaussian distribution, the proportion of data in the
broader part of the distribution has also increased. The proportion of data in the secondary Gaussian remains
the same for tangential smoothing and median filtering as for the original image. However, there is additional
broadening of the secondary distribution for the median filter, as predicted by the ROM data. The data are in
general reconcilable with ROM estimates, with the one exception being the lack of evidence for significant outlier
proportion in multi-spectral filtering of FLAIR images. We believe that this is most likely due to flow artefact in
the FLAIR images which has then been removed from the reference image by low frequency residual subtraction.

LNE Median Filtering Gaussian Smoothing Tangential Smoothing Multi-Spectral

IRTSE 58.76 0.64 (1559) 0.27 (2405) 0.66 (698) 0.22 (1689)
VE(PD) 64.06 0.66 (1466) 0.26 (3127) 0.68 (530) 0.20 (1804)
VE(T2) 58.2 0.63 (1287) 0.26 (1909) 0.69 (426) 0.17 (938)
FLAIR 52.4 0.63 (1934) 0.27 (3827) 0.69 (966) 0.13 (4971)

Table 1: Monte-Carlo estimate of fraction of remaining noise following filtering and data lying beyond 3 S.D. of
original value following filtering (brackets).

Original Median Filter
Mean A σ1 B σ2 Mean A σ1 B σ2

IRTSE -4.6 0.47 44.5 0.53 75.3 0.39 0.39 21.9 0.61 63.7
VE(PD) -4.9 0.54 37.5 0.46 90.6 -7.7 0.60 25.7 0.40 81.5
VE(T2) -7.0 0.34 23.9 0.66 62.9 -7.1 0.58 21.7 0.44 61.5
FLAIR 0.27 0.50 37.1 0.50 93.9 0.15 0.49 20.7 0.51 74.0

Gaussian Smoothing Tangential Smoothing
Mean A σ1 B σ2 Mean A σ1 B σ2

IRTSE 1.1 0.35 14.5 0.65 65.3 -1.1 0.46 29.3 0.54 65.4
VE(PD) 0.77 0.36 10.6 0.64 52.2 4.3 0.51 24.2 0.49 75.1
VE(T2) 1.12 0.35 8.6 0.65 43.7 4.4 0.41 17.2 0.59 49.7
FLAIR 0.79 0.38 10.6 0.62 56.2 0.2 0.43 19.7 0.57 68.1

Table 2: Quantitative Performance of Spatial Filtering

5 Discussion and Conclusions

Multi-spectral filtering can be considered as a regression onto the lines joining pairs of pure tissue locations in
the multi-dimensional grey level space, followed by a weighting with pure tissue values according to the Bayesian
priors. Any voxels composed of pure tissues of appropriate mean values will therefore have the noise on each grey
level removed in such a way as to make the grey level value more consistent with the estimated position along
this partial volume line (Figure 3). The results of such an analysis can be also interpreted as a method of data
fusion, where data from alternative modalities are combined in order to improve the data from each. The results
demonstrate that such an approach does not produce the loss of high spatial frequency structure inherent in even
the most careful spatial filtering schemes.

(a) (b) (c) (d)

Figure 3: Grey Level Distributions before (a) and after (b) Partial Volume Noise Filtering for IRTSE and VE(PD)
images, and before (c) and after (d) Partial Volume Noise Filtering for VE(T2) and FLAIR images.

There is a subtle but important difference between using models based upon spatial distribution and those based
upon partial volume behaviour for MR analysis. The former can only be determined from example data and there

6



can never be a spatial model which will be appropriate for the contents of all biological images. Grey level density
models however, have statistical characteristics which are purely determined by the acquisition process (ie: the
underlying physics of the measurement process). We might therefore expect that if we knew enough about the
image formation process for a particular imaging protocol we may be able to construct a model which is true for all
images from a particular acquisition containing equivalent tissue types. This approach to filtering may therefore
be regarded as a gold standard for testing of spatial filtering techniques.

In comparison to other mechanisms for the generation of test data, the most commonly used technique is probably
the BRAINWEB simulation. This can be thought of as equivalent to the final stages of the reconstruction process
presented here, except that their volume estimation process is based upon a ”fuzzy” class membership process, not
explicit partial volume estimation, and of course they have one fixed model. Our approach raises the possibility of
generating personalised models with checks on the validity of the reconstruction process.

This paper has shown how techniques generally used for tissue segmentation can be used to provide noise filtering
of multi-spectral images based upon an analysis of partial volume structure. We have used this data to corroborate
the use of performance measures which do not require a ‘gold standard’. We conclude that the combination of an
ROM and a Monte-Carlo stability analysis are sufficient to predict the important characteristics of a noise filtering
scheme. A summary of the results for all filters and data show in this paper are given in Figure 4. On this graph
we see that in general multi-spectral filtering is no more destructive to image contents than tangential smoothing
or median filtering but removes more image noise than Gaussian smoothing. We therefore suggest that such image
reconstruction techniques may be a useful way of getting the most from multiple MR acquisitions. Software and
test data are available on the web [8].

Figure 4: Residual Outlier Measure (ROM) vs Monte-Carlo Stability. Multi-spectral Filtering +; Gaussian Smooth-
ing X; Median filtering � , Tangential Smoothing O.

6 Appendix: Derivation of Equation 1

Equation 1 is the result of the convolution of a triangular distribution with a normal distribution. Let a and b
represent the non-zero range of the triangular distribution, c its intercept and k its gradient, as shown in Figure 5.
Let σ represent the standard deviation of the normal distribution. The triangular distribution can then be written
as

kx + c

and the normal distribution as
1√
2πσ

e−
x
2

2σ2

The convolution of the two distributions is then given by

∫ b

a

(kt + c)
1√
2πσ

e−
(t−x)2

2σ2 dt
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a b x

c

y

Gradient = k

Figure 5: Parameters of a triangular distribution.

where the limits a and b can be imposed on the integral since this is the non-zero range of the triangular distribution.
This expression is amenable to integration by parts using

∫ b

a

f(t)g′(t) = f(t)g(t) −
∫ b

a

f ′(t)g(t)dt

Let the triangular distribution be f(t)
f(t) = kt + c

and the normal distribution g′(t)

g′(t) =
1√
2πσ

e−
(t−x)2

2σ2 (2)

Differentiating the triangular distribution gives
f ′(t) = k

The integral of the normal distribution

g(t) =

∫

1√
2πσ

e−
(t−x)2

2σ2 dt

can be expressed using the error function. Let

u =
t − x√

2σ

so
du

dt
=

1√
2σ

and
dt =

√
2σdu

Substituting u into Eq.2 gives

g(u) =
1

2

∫

2√
π

e−u2

du

The error function erf(u) is given by

erf(u) =

∫ u

0

2√
π

e−z2

dz

Therefore

g(u) =
1

2
erf(u) ⇒ g(t) =

1

2
erf

(

t − x√
2π

)

Collecting terms

f(x) ⊗ g′(x) =
kt + c

2
erf

(

t − x√
2σ

)

∣

∣

∣

b

a
−

∫ b

a

k

2
erf

(

t − x√
2σ

)

dt

Re-applying the substitution for u in the second (integral) term on the RHS gives

∫

k

2
erf

(

t − x√
2σ

)

dt = − kσ√
2

∫

erf(u)du
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The integral of the erf function is given by

∫

erf(u)du = u erf(u) +
e−u2

√
π

Therefore,

− kσ√
2

∫

erf(u)du = − kσ√
2

[

u erf(u) +
e−u2

√
π

]

= − kσ√
2

[

t − x√
2σ

erf

(

t − x√
2σ

)

+
1√
π

e−
(t−x)2

2σ2

]

Collecting terms

f(x) ⊗ g′(x) =
kt + c

2
erf

(

t − x√
2σ

)

∣

∣

∣

b

a
− kσ√

2

[

t − x√
2σ

erf

(

t − x√
2σ

)

+
1√
π

e−
(t−x)2

2σ2

]

∣

∣

∣

b

a

Evaluating the limits and collecting terms in erf and exp gives

f(x) ⊗ g′(x) =
kx + c

2
erf

(

b − x√
2σ

)

− kx + c

2
erf

(

a − x√
2σ

)

− kσ√
2π

[

e−
(b−x)2

2σ2 − e−
(a−x)2

2σ2

]

This expression can be rearranged using
(b − x)2 = (x − b)2

(a − x)2 = (x − a)2

and the fact that the erf function is odd, so

erf(b − x) = −erf(x − b)

erf(a − x) = −erf(x − a)

to give

f(x) ⊗ g′(x) = −kx + c

2

[

erf

(

x − b√
2σ

)

− erf

(

x − a√
2σ

)]

− kσ√
2π

[

e−
(x−b)2

2σ2 − e−
(x−a)2

2σ2

]

Q.E.D.
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[6] M. Pokrić, N.A. Thacker, M.L.J. Scott, A. Jackson, ”Multi-dimensional Medical Image Segmentation with
Partial Voluming”, Proc. MIUA2001, pp. 77-80,2001.

[7] P.A. Bromiley, N.A. Thacker, M.L.J. Scott, M. Pokrić,A.J. Lacey, and T.F. Cootes, ”Bayesian and Non-
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