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Abstract

We present a new algorithm for the segmentation of medical image volumes, which addresses the
problem of partial volume tissue estimation, where a mixture of tissues combine to form the intensity
value for a particular voxel. In addition, the algorithm is capable of using multiple image volumes, and
the associated multi-dimensional image gradient, to increase tissue separability. It uses the Expectation-
Maximisation (EM) algorithm to perform clustering in image intensity and gradient histograms. Bayes
theory is used to generate probability maps for the most likely tissue volume fraction within each voxel,
in contrast to previous approaches, which typically compute the most likely tissue class label.

Evaluation of the algorithm consisted of three stages, all of which used MR data sets of the normal
human brain. First, the improvement in the model parameter stability gained through the inclusion of
gradient information was evaluated. Second, the improved segmentation accuracy of multi-dimensional
approaches was demonstrated by assessing the errors on reconstructed images produced from the seg-
mentation result. Finally, the absolute accuracy of the segmentation when applied to an exemplar
medical problem, the measurement of cerebrospinal fluid (CSF) volumes, was evaluated through com-
parison with a “bronze-standard” consisting of previous published measurements.

1 Introduction

The physical processes underlying medical imaging equipment such as computed tomography (CT) and magnetic
resonance imaging (MRI) result in the production of images in which the contrast between tissues is determined
by their physical properties, such as X-ray attenuation or proton density. Accurate segmentation of images offers
the opportunity to produce parametric images of tissue type (i.e. grey matter, white matter, tumour etc.) that
are more relevant to clinical investigation. Once the images are segmented and tissue models obtained they can be
used for extraction of tissue boundaries or quantitative estimation of volume [40]. Derived 3D models of scanned
anatomy can also be applied to pre-operative planning, surgical rehearsal and training [26].

The literature describes several approaches to the problem of medical image segmentation. These can be broadly
divided into two types: those operating in the image plane, and those operating in feature space. Some level
of manual intervention is also typically required. Most image-plane based approaches can be related in some
sense to edge detection: for example, [14] directly used a combination of edge detection and manual tracing to
segment structures within the brain from MR images. Several classes of algorithm combine edge detection with
varying levels of a-priori knowledge of the expected shape of structures. For example, snake-based or active contour
algorithms (e.g. [4]) combine edge detection with a relatively weak constraint of local edge smoothness, whereas
active shape models (e.g. [17,32,46]) involve the construction of a comprehensive model of the expected shape of
a structure, followed by location of that structure in the image. Alternatively, a definition of intensity similarity
rather than intensity difference can be applied, as in region-growing approaches ( [25]). Such algorithms require
manual placement of a seed point within a region, followed by automatic identification of all connected voxels of
similar intensity.

Feature-space approaches operate on some function of the image, rather than the image itself: an intensity his-
togram is the most common feature space used. Segmentation thus becomes the problem of identifying clusters
in the intensity histogram. The simplest approach is binary thresholding at points of low data density in the his-
togram, which may be selected empirically as in the MIDAS software used in [10] and [44]. Again, region growing
from manually selected seed points can also be applied, as in [24]. Split-and-merge algorithms (e.g. [31]) form



a related approach, but one which does not require the selection of seed points. However, these approaches are
sensitive to partial volume effects and noise, which can create artificial connections and disconnections respectively.
Classifier methods seek to avoid these problems: for example, the k-nearest-neighbour classifier (e.g. [5]) takes a
set of manually segmented training data and identifies each voxel in the data to be segmented with the voxel in
the training data having the most similar intensity, thus preserving the number of classes.

Clustering algorithms, such as that used in the SPM99 software (e.g. [21], [11]), essentially perform the same
function as classifiers without the use of training data. Three types of clustering algorithm are in common use.
The k-means or ISODATA algorithm [15] iteratively computes the mean of each class, then identifies each voxel
with the class having the most similar mean, and is thus related to the split-and merge algorithm. The fuzzy
c-means algorithm [2] generalises this approach to allow for the overlap of classes, using fuzzy set theory. The
Expectation-Maximisation (EM) algorithm [15,30] applies the clustering approach based on the assumption that
the data follow a Gaussian mixture model.

One significant advantage of feature-space approaches is that they can easily be adapted to deal with multi-
dimensional data, where several images of the same scene, acquired using different imaging modalities, are available.
Such data is frequently encountered in medical image segmentation tasks: for example, both [5] and [24] present
cerebral volume measurements based on multi-dimensional segmentations of proton density (PD) and T2-weighted
MR image volumes. It is difficult to combine, for example, the results of edge detection across multiple images in
a statistically well-founded way. In contrast, clustering approaches can be applied to feature spaces of arbitrary
dimensionality. Therefore, in the simplest case, additional image volumes can be incorporated into the segmentation
task by adding their intensities to the intensity histogram as an extra dimension.

Reasonable forced-choice segmentations can be achieved for many realistic medical data sets containing only a few
tissues using only knowledge of the distributions of the grey-levels for each tissue type [16,28]. However, such
segmentations can be quite inaccurate and must often be supplemented by local smoothness assumptions, noise
filtering or regional constraints. If more than three tissues are present it is necessary to examine the distribution
of the grey levels in two or more registered images in order to achieve 10% or better volumetric estimation
accuracy [35]. In addition, much work regarding probabilistic analysis of voxel contents uses the assumption that
there is a negligible occurrence of pixels exhibiting partial volume effects i.e. containing more than one tissue. In
fact, Laidlaw [28], Noe [34] and our own work [35,36] have all demonstrated that the partial volume process is
significant, especially with respect to MR images of the brain, with partial volume processes affecting as many
as 40% of voxels in thick slice acquisitions. Such data cannot be analysed using a set of mutually exclusive,
pure-tissue hypotheses: accurate interpretation of the data requires that partial volume distributions are modelled.
Fortunately, the physics of the image formation processes in a wide variety of medical imaging modalities allow
partial volume distributions for paired tissue combinations to be modelled as a simple, linear process [42]. Relative
fractions of different tissues therefore contribute proportionately to the intensity in a given voxel.

In this paper, we define a computational approach to model partial volume distributions in multi-dimensional
images produced by linear formation processes. The Expectation Maximisation (EM) algorithm [3,18,23] is
utilised for the estimation of parameters of the multi-dimensional models. We have previously extended the EM
approach for terms which describe both the pure and partial volume tissues [36]. A method for combined multi-
image segmentation and field inhomogeneity correction within an EM framework has been suggested by Wells [43].
The conventional interpretation of this algorithm is as a system for estimating unseen variables: here it should
simply be interpreted as an efficient way of fitting a density model to a multi-dimensional data set.

Further improvements in segmentation accuracy can be gained through extracting more information from the
images under analysis, for example estimates of local image structure. Some previous work has attempted to
modify the Bayesian formalism to account for local structure, such as boundaries, by using estimates of prior
probabilities based upon a local resampling of data or Markov Random Field (MRF) formulations [29]. The
freedom to take such a step is linked to the classic problem of identification of prior probabilities in Bayesian
methods [9]. However, in the work presented here we take an alternative view that local information regarding
image structure can be included directly within the density model. The use of Bayes theorem can be modified
to include local image derivatives as well as grey levels using only the same assumptions underlying the standard
approaches. In low-contrast situations this approach effectively doubles the information available for partial volume
estimation.
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Figure 1: An example partial volume tissue model. Pure tissues have Gaussian distributions (dashed line), whereas
mixtures of tissues take form of triangular distributions convolved with a Gaussian (dotted lines). The model
components are summed to give the overall distribution (solid line).

2 Method

2.1 Multi-dimensional Grey Level and Slope Analysis

Consider a data set consisting of multiple, pre-registered images of the same region, where g is the vector of grey-
levels of a given voxel in the set of images and s is the local multi-dimensional image gradient, the square-root of
the sum-squared derivatives. The conditional probability that a pixel may be assigned to a specific tissue class ¢
given its grey-level and gradient is given by Bayes theorem as

_ P()P(g.slt)
=, PO P(g, 3l1)

In this expression P(t) are the prior probabilities of the tissue class ¢, P(g, s|t) is the likelihood of the grey level g
and the derivative s given a tissue class t and P(g, s) is the global likelihood of the instance of data g,s. Assuming
independence of the grey level and slope probabilities it would be possible to write P(g, s|t) as the product of two
terms P(g]|t)P(s|t). However, the slope value must be dependent upon the grey level, as the partial volume process
is caused by tissue boundaries. Therefore, we have instead

P(tlg, s)

P(g, st) = P(glt)P(s|g,t)

where P(glt) is the expected distribution of grey levels for each class and P(s|g,t) is the expected distribution of
slope values as a function of grey level for each class.

Although partial volume voxels could be accounted for in this formulation through the inclusion of a specific class
for each pair of tissues, the probability of classification of such a voxel is of little direct use: estimates of the
most probable partial volume contribution from each tissue are required instead. Therefore, a model of the partial
volume contributions for each tissue contributing to the mixture is needed, in the form of the two distributions
P(g, s|tr) and P(g, s|rt). The ordering of the tissues in this notation is insignificant: P(g, s|tr) can be interpreted
as the volumetric contribution from tissue ¢ in the presence of tissue r. Assuming a linear image formation process,
these distributions d.(g) can be estimated as the convolution of a triangular density along a line between the two
tissue means in feature space with a multi-dimensional point spread function representing the image noise.

This formulation is equivalent to that suggested by other authors [28]. However, in order to include local slope
information, terms describing the slope density p:-(s,g) are required, which must also be functions of the grey
level g. Using the formulation

P(g,sln) o< dn(g)pn(s, g)

the conditional probability of a grey level being due to a certain mechanism n (either a pure or mixture tissue
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Figure 2: An example of 2D distributions generated from the model for grey levels from two images using only
pure tissue distributions (a) and combined distributions of pure tissues and partial volumes (b).

component) can be calculated using Bayes theory, as

fndn(g)pn(sv g)
fo+ 22, frdi(g)pe(s,8) + 22, D2, firdir(8)pir(s, 8)

where f,, fo, ft and fi,. are effectively priors expressing the frequencies of occurrence (in terms of numbers of
voxels) of particular tissue types. Unknown tissues are accounted for in the Bayesian formulation by including
a fixed extra term fy for infrequently occurring outlier data [20] in the summed likelihood term, which enables
separation of pathological tissues.

P(nlg,s) = (1)

Through using this representation, rather than working with class assignment probabilities, it is possible to obtain
the most probable volumetric measurement V; for each tissue ¢ given the observed data g, in voxel v,

Vi(gv,s0) = P(tlgv, sv) +Zp(tr|gw3v) (2)

The approach is easily simplified to remove the slope information by simply setting p =1 in 1.

2.2 Grey Level Model

The formulation described above requires the assumption of distributions both for the pure tissues and for the
point spread functions convolved with triangular distributions to describe the partial volume contributions. These
distributions represent both the inherent tissue variability and the measurement noise. Assuming Gaussian distri-
butions, each pure tissue ¢ is described by

di(g) = Octe_%(g_Mt)TCf(g_Mt)
where My is a vector describing the tissue mean grey-level, C} is the inverse of the covariance matrix, and «; is a
constant that provides unit normalisation.

In [28] partial volume distributions were modelled as a uniform (1D) distribution convolved with a fixed point
spread function. This model is valid for an equal prior probability of all possible partial volumes. In the approach
described here, using an assumption of a linear image formation process, this partial volume distribution can be
thought of as being composed of two triangular distributions convolved with a Gaussian, where d;,(g) is the local
density estimate for tissue ¢ generated by a partial voluming process with tissue r. This model can take a range
of different forms, depending on the relative scales of the measurement noise and the difference between the pure
tissue mean grey levels. Assuming that the latter dominates, multi-dimensional partial volume distributions can
be modelled as the product of two terms: a 1D projection T%,.(h) of the partial volume distribution onto the vector
connecting the two pure tissue means M and Mg, and the value of a Gaussian at the normal distance N(g) of
the data point g away from this line. Therefore

dip(8) = By Tin(h)e 2N @ CaNlg)
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Figure 3: Rician distributions with varying mean (a) p distributions with v = 1 for varying scale (b).

where h is a fractional distance between two centres of distribution (0 < h < 1)

(g - MS)TCh (Mt - Ms)

h =
(Mg — M) Cp(Me — Ms)|

(', is an inverse covariance matrix

Ch = Cih + Cy(1—h)

and [, is a constant which gives unit normalisation. As the definitions of A and C} are dependent the first two
steps of this process must be performed as an iterated closest point algorithm. Examples of such distributions for
2D image data are shown in Fig.2: the partial volume contributions are visible as elongated structures in feature
space, linking the centres of the pure tissue distributions.

2.3 Multi-dimensional Slope Model

In previous work [45] we demonstrated the inclusion of slope information into the feature space for segmentation
of single images. The mean of the slope distribution was estimated from the tissue contrast, whilst the width of
the distribution was determined by the image noise. In this work, the use of local image slopes was extended to
multi-dimensional data. However, rather than attempting to model the slope distribution separately in each image,
which would require the optimisation of a large number of model parameters and so be computationally expensive,
a single multi-dimensional slope distribution was used.

The multi-dimensional image gradient is estimated in the standard way, using

N
Vo I2+ V12
¢ — Z% Y (3)
k

where V, I}, is the gradient component of the image k in x direction, VI is gradient component of the image
k in y direction, oy is standard deviation of noise in the image k, N is the total number of images, and A is a
fit parameter. Each term in the sum is normalised to the image noise in order to take account of the intrinsic
information content of the data. The absence of a z derivative term is deliberate. Standard acquisition practices
commonly result in voxel dimensions that are larger in the through-plane direction (z) than within the imaging
plane (z — y), and an inter-slice gap. These factors complicate any definition of a z derivative and confound any
attempt at a theoretical description of the three-dimensional slope distribution. In addition, avoiding the use of a
z gradient allows an analysis of individual slices and avoids having to deal with edge effects.

If the z component were included in the gradient calculation and the voxels were isotropic, then the multi-
dimensional gradient distribution would be similar to a x? for three degrees of freedom and non-zero mean [12].
The mean of the gradient distribution would increase linearly with the number of images considered, but the width
of the distribution would increase only as the square-root. However, the presence of a finite z component that is
ignored in the gradient calculation simplifies the model, as it ensures that the width of the distribution is largely
determined by the mean i.e. the tissue contrast, rather than the noise. Therefore, for a randomly oriented bound-
ary with fixed pure tissues on either side, the gradient distribution can be modelled using a single, scaled function,



where the scale parameter is determined by the tissue contrast. The A parameter ensures that the same distribution
can be used to account for both pure tissue voxels, with zero mean slope, and partial volume voxels with a finite
mean slope. In the limit of infinitely thin slices, the z component would be zero; the required distribution would
then be composed of the root-mean-square of two squared quantities, each assumed to have independent Gaussian
random noise, and so would be a Rician distribution® [22], as shown in Fig./reffig:rice. In practice this will not be
the case, but it was found empirically that multiplication with a simple power law dependent on a parameter =y
was sufficient to account for this effect, giving

s7 _ 2
pn(s:8) = pn(s,a) = —7 exp” 22 (4)

where a is the scale parameter. The shape of this distribution for v = 1 is shown in 3(b).

A set of logical constraints can be applied to the scale parameter a. It was found [45] that the distributions
in gradient vs. intensity projections of the feature space for MR images form approximately elliptical features
between pairs of pure tissues, with the highest gradients occurring in voxels consisting of equal contributions from
two tissues i.e. at edges. This would be expected of any linear image formation process, and indicates that the scale
parameter is linearly dependent on the fractional volumetric contribution from each tissue class present in that
voxel. Furthermore, the ends of the partial volume distributions must match exactly the pure tissue distributions.
Therefore, a reasonable model for the scale parameter a in any given voxel is

N (mgr —m )2
a*(q) = N(qar + (1 — q)as)® + afw(q) Y %
k

()
where a; and ay, form a matrix of scale parameters for the pure tissues and partial volume combinations respectively.
The first term establishes a linear baseline between the two pure tissue distributions; ¢ is the fractional volumetric
contribution to the voxel from tissue class j determined from the grey-level multi-dimensional probability model
(0 < dir(g)/(der(g) + dre(g))) < 1. The required elliptical dependency upon ¢ can then be introduced by defining
w(q) = 1 — 4(q — 0.5)°, such that a(0) = a;v/N and a(1) = a,v/N, which are the pure tissue tissue distribution
parameters. This selection of p gives identical values for both tissue partial volumes ¢r and rt at a given g, s.

2.4 Parameter Estimation

Parameters of the model can be iteratively estimated using the Expectation Maximisation (EM) approach [18] [43],
which is used to estimate the parameters by maximising the likelihood of the data distribution. The conventional
interpretation of this algorithm is that it can be applied to estimating the parameters of Gaussian mixture models.
However, as shown in Appendix 1, it has more general applicability and can be applied to distributions other than
Gaussians provided that the locations and shapes of the mixture density functions are parameterised in terms of
centroids and other moments.

The Expectation step involves computing the Bayes probability P(n|g,s) for every voxel based upon the current
estimate of the parameters using 1. The Maximisation step is then applied for the estimation of; normalisation
parameters for pure and mixture tissues, (f; , fir), mean (G¢) and covariance matrices (Cy) which take the form

|4 A%
1
fl = ;P(ﬂgv,sy) and . = fl, = 5;P(tﬂgv,sv) + P(rt|gv, sv)

174 174
1 _ 1
fo = vV Zp(ﬂgv, Sv)gv and Clt = Vv Zp(tlgva 5v)(8v — Gt) ® (gv - Gt)T

The estimated values for f,, correspond to the total volumetric estimate of the tissue process for the voxel. Thus
its interpretation as a Baysian prior is such that this value is at least consistent with the sample under analysis.
Even so, this approach can produce problems when attempting to quantify changes between two data sets, when it
might be necessary to use one consistent value in order to maximise repeatability of measurement [40]. Terms fs,
and f,; are equal and sum to the total number of voxels generated by the two tissues ¢ and r, as they must for any
partition of voxels which is uncorrelated with imaging geometry. Prior knowledge of image content is incorporated
into this process by constraining particular sets of prior frequencies f, due to impossible tissue combinations to
be zero.

IThe noise distribution in MR magnitude images takes the same form, as they are also composed of the root-mean-square of two
quantities each typically having Gaussian random noise, namely the real and imaginary images.



The standard proof of convergence for the EM algorithm implies that the slope parameters can be computed by
rescaling the current estimate using the sample mean. The initial value of the a, factor is set as a ratio of the
mean value of the slope data pgqtq to the theoretical mean value piyode; calculated from the slope model. The
value of a,, for the pure ¢ or mixture tissue component ¢r is then re-calculated during the Maximisation step using

> 5uP(t|gvs 5)
:ufiata = UVU —— and :ufifzta =
Z’U P(t|g’U7SU)

VoA Vo .
P(t P(t P(rt
:ufnodel — E” v ( |gv,8v) and luﬁgodel — Zv Sv ( rlgvasv) + Sy (T |gv75v)

SV P(tlge, sv) Sy Pltrlge, sv) + P(rtlgy, sv)
where §, is the first moment of the current estimate of the p(s,a) distribution and takes the value a(q)+/8/7 for

v = 2, but will more generally be of the form a(q)x (where & is a constant) for any fixed distribution shape. The
general form of the update for the pure or partial volume slope parameters is then

SV sy P(tr|ge, 55) + suP(rt|g, s5)
ZUV P(tr|gy, sv) + P(rt|gv, sv)

Mn
a;’ _ ndata an (6)
Honodel

These update equations generate values of partial volume slope distribution parameters which satisfy
Aty = Qrt
This has the useful consequence that

q = dir(8)/((dir(8) + dii(g)) = P(g,sltr)/(P(g,sltr) + P(g,s[rt))

so that the necessary a(q) term for §, can be regenerated using 5 from the results of the Expectation step.
Although this process results in an exact likelihood estimate of the pure tissue parameters a; it results in only a
proportional under-correction of the partial volume terms. This would, however, appear to be enough to ensure
rapid convergence.

3 Evaluation Methodology

Evaluation of the absolute accuracy of segmentation algorithms is typically performed through comparison with
“gold-standard” segmentations. In the case of medical image segmentation, these are usually image data sets that
have been segmented by hand by an expert observer. However, the production of such gold-standard data sets is
time consuming, limited to labelling of the dominant tissue type in each voxel, and is particularly difficult for some
clinical images, such MR images of the brain, due to the subjective nature of the delineation of many anatomical
regions. Since the algorithm described here was intended to accurately model partial volume contributions to
each voxel, and produced probability maps representing the most probable tissue volume fraction in each voxel
rather than the most probable single tissue label, an evaluation methodology was adopted that avoided the need
for gold-standard data. In addition, the method avoided reliance on simulated data sets, which ultimately could
only prove consistency between the segmentation algorithm and the simulation process, and instead used in-vivo
image data.

The bulk of the evaluation work presented here was based on MR images of the brain. 70 normal volunteers
(32 male and 38 female) ranging in age from 19 to 85 years with a mean age of 57 + 20 years were recruited.
None of the subjects had vascular risk factors, neuro-logic disease, or cognitive or psychiatric problems. The local
ethics committee approved the research, and informed consent was given for inclusion in the study by the subjects.
All subjects underwent MR imaging with a 1.5-T system (ACS-NT, with PowerTrack 6000 gradient subsystem;
Phillips Medical Systems, Hamburg, Germany) with a birdcage head coil receiver. Fast spin-echo inversion-recovery
(IRTSE) images (repetition time, 6850 msec; echo time, 18 msec; inversion time, 300msec; echo train length, 9)
were obtained in contiguous 3-mm thick sections throughout the brain, with an in-plane resolution of 0.89mm?
(matrix, 256 x 204, field of view, 230 x 184mm), and real image reconstruction was performed. In addition, in order
to demonstrate segmentations of multi-dimensional data, several additional MR image types were obtained for one
of the subjects: variable echo proton density and T2 (VE (PD) and VE (T2)), and fluid-attenuated inversion
recovery (FLAIR) images. These pulse sequences were chosen for their good tissue separation and availability in a
clinical environment. Finally, in order to illustrate application of the algorithm to tissues other than those present
in the brain, one surface coil T2(PD) image of the leg was acquired and corrected for field inhomogeneity using
the algorithm described in [41]; however, this was only used in qualitative evaluations.



The evaluation comprised three stages. The first was based upon the observation that good models of data
behaviour should have better-constrained parameters than poor models. A study was therefore designed to assess
the benefits of the inclusion of slope information in the feature space through the resulting improvement in tissue
model parameter stability. Since the effect of this additional information will be greatest when the quantity of
information available in the form of grey-level data is the least, these experiments were performed on single-
dimensional data. Ten subjects were selected at random from the available data sets. The IRTSE images from
each subject were used, and an initial, approximate set of model parameters was specified to act as a consistent
starting point for the optimisation. Each data set was then segmented forty times, both with and without the
inclusion of gradient information in the feature space, with random perturbations applied to the initial tissue mean
grey level parameters prior to each segmentation. The standard deviations of the optimised grey matter, white
matter and CSF mean grey-levels across the forty segmentations were calculated. The experiment was repeated
with varying levels of initial randomisation from 50 and 200 grey-levels; the upper value of § was selected to be
the highest value that did not allow any two of the initial model tissue means to become equal. Finally, the
standard deviations of the tissue mean grey levels after optimisation were averaged across the ten subjects, and
the results for segmentations with and without gradient information were compared. In order to provide a baseline
for this comparison, identical experiments were performed using a straw-man algorithm, based on the use of a
conventional optimiser (downhill simplex) to perform a y? based histogram fit for the partial volume model (i.e.
without gradient information). Control parameters for this algorithm were set in accordance with guidelines given
in [37].

The second stage of evaluation was based on the idea that, since the segmentation technique presented here provides
a volumetric model description of voxel content, it should be capable of regenerating the original image content
for each input image in the case of zero noise. The process is simply one of using the estimated model parameters
to generate the expected grey level values, using the linear equations implicit in the segmentation. Thus multi-
spectral segmentation techniques can be used as the basis for noise filtering. Four MR images (IRTSE, VE(T2),
VE(PD), and FLAIR) of a single normal subject were used. The data was registered to an alignment accuracy
better than a fraction of a voxel. The four images were analysed using the multi-dimensional partial volume
analysis describing six tissue classes; air/bone, skin/muscle, fat, CSF, grey matter and white matter. Noise-free
estimates of the original images were then generated from the optimised model, and two analyses were applied.
The first was a Monte-Carlo stability analysis [39], in which the relative change in the output image grey-levels
produced by the addition of a small amount of noise to the input images was evaluated. For small perturbations
of input data the effects on output data can be estimated using a linearised approximation i.e. error propagation.
In this limit the noise removal characteristics of an algorithm can be expressed as the proportion of remaining
noise. The Monte-Carlo stability analysis therefore estimated the fraction of noise remaining after filtering. The
second was a residual outlier measure (ROM), the number of reconstructed grey-level values which are modified by
more than three standard deviations of the original image noise, after compensating for local field inhomogeneity.
The local image noise was estimated using a technique based upon the distribution of local derivatives, and was
thus estimated independently of the technique used in the Monte-Carlo stability analysis. The two analyses were
complementary: the Monte-Carlo stability indicated the proportion of noise reduction on the assumption that the
model used in the filtering was appropriate, and the ROM indicated the number of voxels for which the model was
inappropriate. In order to provide a benchmark for the evaluation, it was also applied to three conventional noise
filtering schemes. The first, tangential filtering [39], applies averaging over three pixels (one central and two either
side) along the normal to the direction of maximum local image gradient. In the absence of noise, the gradient
along this normal is expected to be zero in any image composed of smooth, continuous regions. Since many medical
image modalities produce images that conform to this behaviour, tangential smoothing is theoretically the least
destructive noise filtering scheme. Gaussian filtering using a kernel with a standard deviation of 1 pixel and median
filtering over the local neighbourhood of 9 pixels were also used.

The third stage of the evaluation was designed to test the absolute accuracy of the segmentation in volumetric
estimation tasks. A task of clinical relevance, namely measuring the volume of cerebrospinal fluid (CSF) in the
normal brain, was chosen as an exemplar. Rather than attempting to define a gold standard against which a
comparison could be performed, a “bronze standard” consisting of CSF volume measurements from the literature
was constructed. The CSF in the IRTSE images of the 70 normal volunteers described above was segmented,
using both image grey-levels and gradients in the feature space. The volume was measured from CSF probability
maps binarised at the 0.5 level. All measurements were then normalised to the total intra-cranial volume (TIV),
measured using the same technique, which has been shown [44] to be an effective normalisation for both inter-
individual variations in head size and variation in voxel sizes in longitudinal studies. A functional fit to the TIV
normalised CSF volumes was then calculated based upon a Weibull cumulative distribution function, as described
in [8].

Eight papers published between 1991 and 2002, which quoted TIV and CSF volume measurements from MR



Reference No. subjects | Definition of measurement space | Segmentation
Gur et. al. 1991 [24] 69 Excludes cerebellum T2/PD 2D his-

togram fitting
Blatter et. al. 1995 [5] 89 M 105 F TIV ANALYZE [13,38]
Mueller et. al. 1998 [33] 46 Excludes brainstem REGION [27]
Coffey et. al. 1999 [14] 122 M 198 F | Excludes slices below midbrain | MedVision
Chan et. al. 2001 [10] 10 TIV MIDAS [19]
Whitwell et. al. 2001 [44] | 55 Excludes slices below cerebellum | MIDAS [19]
Good. et. al. 2001 [21] 265 M 200 F | TIV SPM99 [1
Chard et. al. 2002 [11] 13M14F Excludes slices containing cere- | SPM99 [1

bellum

Table 1: Details of the experimental method adopted by studies used in the meta-study, showing the number of
subjects included (M=male; F=female; T=total, where the number of each sex was not given), the definition of the
measurement space (where TTV is indicated, the whole CSF pool inside the cranium was used), and the software
used to perform the segmentation.

images in normal subjects, were then collected. These previous studies used a variety of MR pulse sequences,
definitions of the measurement space, and segmentation routines, summarised in Table 1. Most of the studies used
1.5T GE Signa MR scanners, with the exceptions of the present study, [14], where some images were acquired on
a 0.35T Toshiba scanner, and [21], in which a 2T Siemens MAGNETOM Vision scanner was used. Of specific
interest are the details of the segmentation routines. The in-house software used by [24] combined manual tracing
of the skull boundary, followed by manual identification of clusters representing brain and CSF in 2D intensity
histograms produced from proton-density (PD) and T2-weighted MR images. Local region growing was then
applied to segment these tissues. A similar approach was used in [5], with manual identification of regions of
CSF, grey-matter and white matter in the images, followed by k-nearest-neighbour classification of the pixels in
2D histograms produced from T1/T2 intermediate and T2-weighted images. The REGION software used in [33]
features a recursive segmentation algorithm, where the user specifies points in bone, CSF, brain (grey and white
matter) and high signal intensity areas in white matter. Each tissue type then recursively identified: bone is
identified first, allowing skull stripping to leave the intracranial region, then brain and CSF are segmented. A
largely manual technique was adopted in [14], with structures identified manually with the aid of printed normal
brain and MR atlases, then segmented with a combination of edge detection and manual tracing. The MIDAS
software was used to segment T1-weighted images in both [10] and [44]; segmentation was achieved by intensity
thresholding at levels set empirically to fractions of the mean brain intensity or intracranial intensity. A fixed
threshold of 60% of mean brain intensity for CSF segmentation to improve consistency. The SPM99 software
was used in both [21] and [11], with the segmentation performed using cluster analysis on image intensities in
T1-weighted MPRAGE and fast spoiled gradient recall (FSPOR) images respectively, plus a-priori knowledge of
tissue locations. Intensity non-uniformity correction was also used in both studies.

4 Results

4.1 Single Image and Single Image plus Slope

Results obtained from MR images of a human leg and brain demonstrate qualitatively how the new segmentation
method can remove commonly occurring artifacts in partial volume probability maps. Figure 4(a) shows an MR
image of the leg. The segmentation algorithm was applied, without the use of gradient terms, for three tissue
types: air/bone, muscle and fat. The most probable muscle volume fraction in each voxel computed using 2 is
shown in 6(a). The slope image was then calculated 4(b) using 3, and the slope model parameters estimated using
for the slope density distribution p with v =1 and A = 0. A scatter plot of the resulting slope density distribution
against grey level and the original data distribution are shown in 5(b) and 5(a). Pure tissue volumes are towards
the bottom of these plots and the higher slope values are expected to correspond to partial volume processes.
These distributions were compared quantitatively by plotting histogrammes of s/a(q) for pure and partial volume
voxel fractions, where each entry is weighted by the P(n|g,s), in order to confirm the selections for A and ~.
The volumetric analysis for muscle tissue based upon the combined slope and grey level image is shown in 6(b).
Comparison of this result to the grey level only result illustrates the reduction in ambiguity between the muscle
and edges around bone and skin, which generate grey level values similar to pure muscle.
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(a) (b)
Figure 4: MR image of the leg (a) and its associated gradient image (b).

S - . - -

(a) (b)
Figure 5: Scatter plot of gradient vs grey level values for the MR leg image (a) and the optimised model (b).

Similar results were obtained from analysis of the IRTSE brain image shown in Fig. 7(a). Segmentations were
performed both with and without the inclusion of gradient information in the feature space, and volumetric prob-
ability maps of grey matter were produced. These maps were visually indistinguishable. However, the difference
between the two 7(b) illustrates a systematic increase in grey matter probability when slope information is included,
particularly at the grey matter/white matter boundary. The addition of gradient information reduces ambiguity
between pure tissue and partial volume components of the model that have similar grey levels: grey matter is
particularly affected as its mean grey level in this image lies between that of the other main tissue types present,
white matter and CSF.

A more quantitative evaluation of the improvement in algorithmic performance gained through the use of gradient
information, in terms of the stability of the tissue model parameters, is shown in Fig. 8. This shows the standard
deviations of the final CSF, grey mater and white matter tissue means for 40 segmentations of single data set
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(a) (b)

Figure 6: Tissue segmentation without (a) and with (b) the use of local image slope.

Figure 7: Normal brain MR image (a) and volumetric differences (b) between segmentations with and without
gradient terms.

at each of various levels of initial model randomisation, averaged over ten IRTSE images of the brain. Since
the underlying data remained the same across all segmentations, any variation in the results reflects the ability
of the segmentation algorithm to converge to a stable result. A clear difference between the three algorithms
is demonstrated: the EM-based algorithm without gradient information is roughly an order of magnitude more
stable than the straw-man algorithm, and the EM-based algorithm with gradient information is roughly an order
of magnitude more stable than that without gradient information.
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Figure 8: Standard deviations of the CSF (a), grey matter (b), and white matter (c¢) tissue means for 40 fits to
single MR image volumes, plotted against the level of randomisation applies to the initial model. In each case,
the upper curve shows the results from the x? fit optimised using simplex, the middle curve the results from
the EM-based segmentation without gradient, and the lower curve the results from the EM-based algorithm with
gradient. The curves show linear fits to the data (note that the abscissa is plotted on a logarithmic scale).

LNE | Median Filtering | Gaussian Smoothing | Tangential Smoothing | Multi-Spectral
IRTSE | 58.76 0.64 (1559) 0.27 (2405) 0.66 (698) 0.22 (1689)
VE(PD) | 64.06 0.66 (1466) 0.26 (3127) 0.68 (530) 0.20 (1804)
VE(T2) | 58.2 0.63 (1287) 0.26 (1909) 0.69 (426) 0.17 (938)
FLAIR | 524 0.63 (1934) 0.27 (3827) 0.69 (966) 0.13 (4971)

Table 2: Monte-Carlo estimate of fraction of remaining noise following filtering and data lying beyond 3¢ of original
value following filtering (brackets).

4.2 Multiple Image and Multiple Image plus Slope

Figure 9 shows the ROM and Monte-Carlo stability of noise-free images of the normal brain, regenerated from
a tissue model produced from four images (IRTSE, VE(T2), VE(PD), and FLAIR). The same results are shown
numerically in Table 2. The Monte-Carlo stability provides a measure of the proportion of noise removed from
the images by the regeneration process, whilst the ROM measures the number of grey-level values that have
been changed by more than 30, where o is the original image noise, measured using an independent technique.
The ROM should therefore be equal to 1.96% of the number of voxels in the image if the model matches the
data perfectly which, given the size of the images, equates to approximately 650 voxels. Tangential smoothing,
which theoretically should be the least destructive form of noise removal, achieves this limit and thus provides
a baseline for the comparison. Excluding the FLAIR image result, the multispectral image reconstruction is on
average approximately twice as destructive as tangential smoothing: this indicates that the grey-level model fits
the data well for all but around 2% of the voxels in the images. The ROM for the FLAIR image is higher as such
images are susceptible to flow artefacts. The cerebral vasculature therefore forms an extra tissue class that was not
included in the tissue model, leading to misinterpretation of such voxels. In general multi-spectral filtering is no
more destructive to image contents than median filtering but removes more image noise than Gaussian smoothing.
Therefore, such image reconstruction techniques may be a useful way of processing multiple MR acquisitions.

A final qualitative analysis was applied to the multispectral data in order to demonstrate the effects of including
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Figure 9: Residual outlier measure vs. Monte-Carlo stability.

(a)
Figure 10: Gradient of single (a) and multiple (b) MR images of the brain.

both multi-dimensional data and gradient terms in the feature space. The gradient data was analysed using a p
distribution with v = 2 and A = 0.8. This choice was validated using histogrammes of s/a(q) for partial volume
and pure tissue fractions. The distribution of multi-dimensional gradient s vs. the grey level for the image shown
in 7(a) is shown for the data 11(a) and the model 11(b). In this case, no observable difference was noticed between
the grey matter volume estimates (typically a change of less than 1%). This indicates that the effects of ambiguity
have already been reduced by the use of multiple images to the extent that additional slope information is of no
great value for grey matter volume estimation. However, the most probably volumetric white matter content of
each voxel is shown in 12(b), illustrating improved disambiguation and stability for this tissue.
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(a) (b)
Figure 11: Scatter plot of gradient vs grey level values (a) and the fitted density model (b).

(a) (b)

Figure 12: Tissue segmentation without (a) and with (b) the use of local image slope.

4.3 Meta-study of TIV-normalised CSF Volume Measurements

The meta-study of TIV normalised CSF volume measurements provided an absolute measurement of the accuracy
of the segmentation on a typical image analysis task of clinical relevance. The results are shown in Fig.13. Points
represent the published data: the curves show the functional fit to the data collected in our own study (i.e. not
to the points in the plot). Most of the data show a remarkable level of consistency with each other and with the
functional fit, considering the variations in the experimental procedures. Indirectly, this implies that across these
studies as a whole, the variations in volume measurements introduced by the different experimental procedures
are comparable to or smaller than the inherent biological variability in total intracranial and CSF volumes. Some
outliers are present, representing the results published in [21] and [11], both of which used SPM99 to perform the
segmentation. Significantly higher CSF volumes were quoted by these authors than are supported by the rest of
the literature.
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Figure 13: Previous published TIV normalised CSF volume measurements. The solid curves show the functional
fit to the data presented in this paper: the dashed curves represent the 1o error bounds. The points show data
from the literature. Points with error bars in both the x and y directions represent data published numerically,
whilst points with error bars only in the y direction represent data read from graphs.

5 Conclusions

In previous work we have extended standard volumetric estimation techniques to multiple images. In this work a
method to utilise not only the grey level information but also the local grey level slope information in a MR image
was proposed. The method can be considered as an alternative to both the assumption of local regional smoothness
or local resampling of the prior probabilities, which have previously been suggested by other authors [28]. Unlike
these methods, local information is used directly in a manner which is quantitatively related to the image formation
process. The algorithm also demonstrates the extension of the EM algorithm to fitting non-Gaussian models.

The inclusion of gradient information in the feature space disambiguates partial volume voxels from pure tissue
voxels that have similar grey levels. It was shown to both significantly reduce artefacts arising through this ambi-
guity, and to consequently improve the stability of tissue model parameter estimates. The use of the multispectral
segmentation as a noise-filtering technique was also demonstrated, indirectly confirming the accuracy of the partial
volume tissue model. The absolute accuracy of the segmentation result was demonstrated through comparison with
a clinically relevant bronze standard, consisting of published measurements of TIV normalised CSF volumes. This
meta analysis shows that a partial volume based segmentation technique gives results which are consistent with a
wide variety of manual and semi-automatic approaches. Such approaches inevitably apply a high degree of quality
control and consistency checking. However, the magnitude of the disagreement with other literature, particularly
in the case of the fully automatic techniques [21], is such that we are forced to conclude that these results may
represent methodological flaws. This may be due to failings of a pure tissue (non-partial volume Gaussian) model,
rather than accurate measurements of unexpectedly high CSF volumes. Finally, the effects of including gradient
terms in the analysis of multispectral data were evaluated. The artefact reductions seen with single dimensional
data were still present but, as might be expected in this data-rich scenario, were smaller.
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Appendix A

Consider the process of estimating the parameters for a distribution that models a sample of data measured as a set
of n; frequencies. The aim is to define the probability of observing a set of sample data x; in a multi-dimensional
(continuum) space based upon a specific probability density function A(x;). To do this we must define a finite set
of sample cells (X;) and compute the probability of observing data within each and take the continuum limit. The
correct statistical model for this is the Poisson distribution, so that the probability of observing a given number of
samples within each discrete region within the non-zero portion of the probability density is

exp(—=A)A}
Pl ) = “PCN

The log probability for the model in terms of the data as the sum of independent terms for each quantity of
observation is therefore n; =0, n; =1, n; = 2...;

log(P ZlogPO/\ ZlogPl/\ ZlogP2/\ i) +

The first term describes Ny empty cells, the second Nj cells containing one sample, the third Ny cells containing
two samples etc. This can be rewritten as

No+N1+Nao+...
log(P(\) = Z log P(0,\(X;)) +

Ny
> log P(1,A(X;)) — log P(0, A\(X Zlog P(2,\(X;)) — log P(0,\(X3)) + ...

Substituting the appropriate Poisson terms gives

log(P Zlog X;) exp(—A(Xi)) /1) + (A(X4))
N2 No+N1+Nao+...
+ D Log(V(X) eap(=A(X0))/2) + (AXD) + . - > X))
which simplifies to
Ni+Na+... No+Ni1+Na+...
= X mlghX)) = D> MK+

where ki is a constant? defined by the sample of data and n; is the quantity of data at X;. The second term,
which corresponds to the probability of a zero entry in every location, is simply the integrated probability density,
which can be made constant as part of the model definition: only the first term is data dependent. Therefore

log(P()\)) = Znilog()\(Xi)) - v+ k

2Provided that the sampling process is not respecified, such as happens in some bootstrap likelihood techniques [6,7].
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where v is the integral of the density function and N is the number of non zero cells. Summing now over the M
individual data entries j, the log probability is given by

M
log(P()\)) = Zlog(/\(xj)) — v+ k

This approach is also directly applicable to the continuous distributions (x;)

M
log L = Zlog(/\(xj)) - kg//\(x) dx (7)

where ko is an unknown constant which relates probability density A(x;) to discrete probability A(X;)3. This
measure, first described by Fermi, is known as extended maximum likelihood and forms the statistical basis of the
EM algorithm. It extends standard maximum likelihood to situations where parameters of the density distributions,
particularly the normalisation, are unknown. In the context of the use of an EM optimisation we can therefore
estimate a new set of parameters by minimising the first term subject to the constraint of fixed normalisation of
the density function, so that the arbitrary constant ks plays no role in the solution.

It is well known that the likelihood estimate of the mean of a Gaussian distribution is given by the mean of the
sample. However, there is a more general solution which can be derived from the above likelihood. Differentiating
log L with respect to z. (the translation parameter we get

OA(x;)
S S =0 ()
J
We can then ask which class of definitions of x. are consistent with solution of this expression corresponding to
the mean, i.e.
k3 Z(Xj — Xc) =0
J
where k3 is a constant. This would imply

= x) = 20

rewriting and integrating both sides with respect to x this gives

/kg(x — X)A(x) dx = 82}(::) dx

The right hand term is zero for an integrable function, so the mean of a set of data x; is consistent with a likelihood
estimate of x. when defined as the centroid of the density function

. - [ xA(x) dx
¢ JA(x) dx

for which of course the standard Gaussian result is simply a special case. This result can be trivially extended
to higher order moments by changing the assumed parameter estimation process and repeating the other steps of
the proof. Therefore, EM mixture modelling can be applied to distributions other than just Gaussians, provided
that the location and shapes of the mixture density functions are parameterised in terms of centroids and higher
moments.

3Strictly ks is the interval on x which specifies an independent sample and in order for it to take the form of a simple constant (and
not be a function of x, k2(x;)), we must assume that this interval is the same everywhere within the measurement space i.e. we are in
an equal variance domain.

20



