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Estimating Anisotropic Measurement Errors on Landmarks;
Extension from 2D to 3D.

Abstract

Our intention is to utilise the statistical methods we have developed, for analysis of shape data with an-
isotropic measurement covariances, as a tool to monitor manual and automatic placement of landmarks.
We wish to make quantitative assessments of measurement accuracy, and also identify potential errors
in mark-up at the level of < 5% of the data sample. This document outlines the mechanism we have
used to extend 2D shape rotation analysis, and the extraction of corrected anisotropic measurement
covariances (Tina Memo 2010-009), to 3D. The methods are demonstrated in the analysis of 3D mouse
mandible data, both as a test of the theory/software implementation and as an illustration of use for
the identification of outlier landmarks.

Introduction

The extension to 3D data is mainly involved with the mechanism of representing and estimating 3D shape rotations.
We define a fixed orientation co-ordinate system from a set of 3D data-points based upon a selection of three
landmark points. We then represent a rotation matrix in terms of three separate rotations about the co-ordinate
axes. Finally we compute the linear vectors which approximate the first order shifts seen in the 3D points due to
these rotations. These are then used in the linearised approximation for sample covariance correction, as described
in previous work. These extensions are enough to support a quantitative analysis of 3D landmark data, for the
estimation of landmark accuracy and identification of outlier data. The mathematical model used is described in
detail in the following sections and followed by quantitative tests which demonstrate the numerical stability of the
algorithms using Monte-Carlo data.

Rotation Matrix

Our first task is to define a co-ordinate system for a 3D data-set, from which we can define certain basic properties
of orientation for the mean shape, and so that individual data samples can be approximately oriented prior to
optimisation during linear model construction. In the 2D case this is done by simply defining the line between
two landmark points in the mean model as horizontal. In 3D this situation is more complicated as we have the
possibility of a rotation matrix which must be defined by a minimum of 3 parameters. In order to stay consistent
with the 2D case we define 2 points to establish a horizontal, and then a third to define the vertical relative to the
first two.

Given a 3D shape, take three points pi, p2, p3, with relatively large distance from each other, to define the
orientation plane for the shape (Fig. 1).
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Figure 1:

Find the rotation matrix R based on basic vector calculations as follows.
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Roll, Pitch and Yaw Angles

Given the rotation matrix which brings a dataset into alignment with the preferred co-ordinate system it is now
possible to represent the rotation as a sequence of rotations about three orthogonal axes. According to basic 3D
rotation formulas, and using «, 8, and v as yaw, pitch, and roll respectively, the 3d rotation matrix is defined as
three consecutive rotations around the z, y, and x coordinate axes.

R" = Ry (7)Ry(B)R.() (4)
where
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By making the rotation matrix RT equivalent to Ry, we find the yaw, pitch, and roll angles given by

a= —tan'(RT[1][2]/RT[1][1]) (5)
B = —sin™ ' (RT[1][3]) (6)
v=—tan”'(RT[2][3]/R[3][3]) (7)

Thus we can convert easily between the rotation matrix and rotation parameters.

Orientation Adjustments

In order to perform shape alignment, we must initialise the rotation angles. This is done by computing the R”
matrix for every original shape in the data set and extracting its corresponding «, /3, and v angles. These are then
further adjusted during iterative alignment via optimisation of the an-isotropic measurement based Mahlanobis
distance. We also need to perform orientation adjustment on the mean shape following every iteration over the
set of shape samples. In this case the set of yaw, pitch, and roll angles from the mean shape are subtracted off
the corresponding rotation angles for each shape sample. Following convergence of the model the computed mean
shape then complies with the orientation constraint defined according to our three point method.



Direction Vectors

In order to correct the covariances due to alignment parameters, we compute the approximate linear direction
vectors corresponding to translation, rotation and scale. Computing these for translation and scale are straight-
forward.

For rotation, we compute the direction vector corresponding to each individual rotations ., R, and R,. For the
mean shape m rotated by the yaw angle o around the z axis, we have m’ = R, (a)m, i.e. at each landmark point
with m,, m, and m, as the mean coordinates we can write

cos vmy, — sin am,,
m = | sinam, -+ cosam,
m,

The direction vector then would be the first derivatives of the vector m’ with respect to the angle of rotation «,
as a becomes very small, i.e.

—sin amm, — cos am,,
U, = COs aIm, — sin aimy,

0

Hence the tangential direction of movement in landmark points due to this rotation is

_my

This corresponds to the linearised approximation vector which was used previously for correction of anisotropic
2D measurement covariances. By applying the same method, one can find the direction vectors due to rotation by
the pitch angle 8 around the y axis and due to rotation by the roll angle v around the x axis, i.e.

m,

The three direction vectors are mutually orthogonal and orthogonal to the direction vector due to scaling which
is uy = [m,, my, m,]. These now constitute the linearised parameterisations needed for corrections to the sample
covariance for degree of freedom biases.

Experiments

As our method is based on likelihood, we require that the assumed distribution matches the sample covariance
(more correctly the bias-corrected covariance). The standard way to validate this is through generating Monte-
Carlo (MC) data using the known distributions. Here each shape sample is projected onto the fitted linear model
and a new sample generated equivalent based upon this “noise free” shape perturbed with the estimated anisotropic
error. This preserves the sample distribution allowing stability issues arising due to distribution anomalies (such
as outliers and non-linear distributions) to be identified. For known linear model parameters, and sample
distributions which match the Gaussian and Linear model assumptions, the covariances used by the Monte-Carlo
are expected to be within statistical sampling limits of the ones estimated. Here we use 2.8 standard deviations
of the error on the sample variance (equivalent to 1% of data being expected to fall outside the limits), where the
error on the standard deviation o is o/4/2(K — 1) with K being the number of samples. Additional variance will
be seen for the case where the linear model must also be estimated, so that we can interpret variations beyond
the statistical limits as due to instability in linear model construction (specifically the mean and eigen vectors). In
what follows we experiment with MC data and display a number of informative scatter plots.



We experiment with the Apodemus mouse mandible 3D data of manual mark-ups (provided by our collaborators
at Max Planck as a typical 3D data set). The data corresponds to mouse mandible micro-CT images and consists
of 87 samples with 20 landmarks per sample. This data has been obtained by averaging each left and right points
into one 3D location, in order to eliminate problems with missing data.

As will be shown below, using our Monte-Carlo tests, we found that some outliers exist in the data. Hence,
we applied our outlier detection tool to the original data and, based on the list of potential outliers it provides
(Table 1), chose to remove two samples (14 and 42) from the input TPS data file. These samples require further
investigation in order to determine the cause of this poor conformity to the rest of the data. This leaves 85 samples
in the data to experiment with. Although some evidence of outliers remains, the Monte Carlo results indicate that
these are no longer present at a level which destabilises estimation of the linear model. We notice that this data
(in terms of the biological structures under study) is similar to the 2D mouse mandible data (provided earlier by
our collaborators). Hence we chose to use 5 components in the liner model.

sample landmark error (standard deviation)

14 7 5.474743
14 8 5.531980
14 9 5.698620
14 10 5.725281
14 11 5.775997
14 12 5.782629
14 13 5.858766
14 14 5.998678
14 15 6.215031
14 16 6.229069
14 17 6.303817
14 18 6.317162
14 19 6.338735
14 20 6.694317
42 14 5.186163
42 15 5.294472
42 16 5.535036
42 17 9.655291
42 18 5.738199
42 19 5.759585
42 20 5.806348
23 16 5.356338
23 17 5.519671
23 18 5.708450
23 19 5.949248
23 20 6.025292

Table 1: Outlier removal: Following analysis and estimation of the anisotropic measurement error, the software
lists any landmarks which lie more than a statistical (x?) threshold from the fitted linear model. Here we list
samples corresponding to the top three largest number of errors over the allowable threshold (set to 5.0), when
our method (5-components model) applied to the original Apodemus data (87 x 20); we chose to remove only
the samples 14 and 42. Further data may be removed until estimates of the eigen vectors (and hence anisotropic
measurement error estimate Fig 3.), agree with the Monte-Carlo data generation parameters within the expected
statistical limit.

Exp. A: Here when applying our method to the MC data, the mean shape, eigen-vectors and measurement
covariances used during analysis are identical to the ones used when generating the simulated data (Figs. 2 and
3). The results indicate that for the original data (Fig. 2) there are some eigen-values falling significantly outside
the statistical allowable range. This occurs because the presence of outliers destabilises the estimation of residual
variances, even in the case where the Monte-Carlo data has been generated according to the assumed distributions.
This further indicates that a linear model cannot be reliably fitted to extract the linear deformation parameters
while such data samples are present. In contrast for the data without outliers (Fig. 3) all eigen-values fall within
the range expected. These results validate our software implementation and show that this Monte-Carlo test can
tell us if there are outliers in the data.



Exp. B: An independent model including mean model and linear eigen-vectors is generated using the MC data in
order to compare the distributions of errors estimated using the simulated data against those which are expected,
i.e. the ones assumed when generating the MC data (Figs. 4 and 5). In this case, as the model parameters are
adjusted to minimise residual error, the effects of outliers (large increases) of eigen values are reduced in comparison
to Exp. A. However, the general trend for better predicted eigen-values is still present and the results in Fig. 5
indicate the general level of accuracy of the anisotropic errors expected for real data. The need to fit model
parameters destabilises the smaller eigen-values slightly w.r.t. to 1% lower limit computed from sample statistics.
These results provide an estimate of the repetability of accuracy of the mark-up process which generated this data.
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Figure 2: Original Apodemus data (87 x 20): error eigen-values estimated using the Monte-Carlo data (where mean shape,
eigen-vectors, and measurement covariances are identical to the 5-component model which generated the simulated data)
against the expected ones; the two dashed lines show the +2.80 range.
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Figure 3: Apodemus data (85 x 20; as in Figs. 6-7): error eigen-values estimated using the Monte-Carlo data (where mean
shape, eigen-vectors, and measurement covariances are identical to the 5-component model which generated the simulated
data) against the expected ones; the two dashed lines show the +2.80 range.
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Figure 4: Original Apodemus data (87 x 20): error eigen-values estimated using the Monte-Carlo data against the expected
ones which were used when generating the simulated data; independent models; using 5 model components; the two dashed
lines show the +2.80 range.
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Figure 5: Apodemus data (85 x 20; as in Figs. 6-7): error eigen-values estimated using the Monte-Carlo data against the
expected ones which were used when generating the simulated data; independent models; using 5 model components; the
two dashed lines show the +2.80 range.

Fig. 6 shows the aligned data, each figure consists of three projection planes for the purpose of displaying 3D
results. These are the xy (bottom-right), xz (top-right) and zy (bottom-left) planes. In order to provide the
quantitate results for the covariance estimates displayed here, in Table 2, we list the values of the elements of each



3 x 3 covariance matrix corresponding to each landmark.

In Fig. 7, we show the anisotropic error bars computed using the eigen vectors and values of the 3x3 covariance
matrices. All error bars are rescaled for visualisation purposes (see captions). Error bars for each landmark show
the extent of an elliptical (non-isotropic) distribution around the corresponding point in the mean shape. Such
distributions estimated using our method show exactly why we cannot assume isotropic distributions for the data
as assumed in Procrustes.
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Figure 6: Apodemus mouse mandible data: 85 samples, 20 landmarks (where 2 samples including outliers removed from

the original data set); result of data alignment using our covariance-based method. Projected for display purposes on 2D
planes, xy (bottom-right), xz (top-right) and zy (bottom-left) planes.
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Figure 7: Apodemus mouse 3D data: error bars (x20) using our covariance-based method (5-component model) showing
amount of error in 3 orthogonal directions for each landmark (corresponding to the 3 dimensions of the data); displayed as
in Figure 6. above.

Summary

Starting from a 2D shape analysis system which combines linear model construction and iterative shape alignment,
extension to the 3D case is in general straight forward, the 2D shape vectors become 3D and the 2x2 anisotropic
measurement covariances become 3x3 matrices. The only complication involves the introduction of the two new
rotation parameters required to define a 3D rotation. We have done this here using a mechanism which generalises
the 2D case of rotation about the viewing axis, by adding two new degrees of freedom associated with rotation



sample Cy, Cry Cys Cya Cyy Cy. Cie Cy C..

1 8.51949  3.22594  0.24455  3.22594  8.55357 -1.61503 0.24455 -1.61503 3.88968
2 2.08567  -0.00376 -0.04309 -0.00376 1.15918 0.29724  -0.04309 0.29724  0.91916
3 5.07934  -0.15885 -0.46566 -0.15885 0.61432 0.03121 -0.46566 0.03121  1.83603
4 2.81480  -0.15527 -0.28369 -0.15527 2.57364 -0.30391 -0.28369 -0.30391 1.96222
) 3.36557  0.55763  0.18626  0.55763  2.47538 0.44409 0.18626  0.44409  2.41454
6 6.55171 1.20538  0.49769  1.20538  6.04394 1.52578  0.49769  1.52578  1.66256
7 16.70790 -2.47641 -0.00234 -2.47641 3.11547 -0.11302 -0.00234 -0.11302 1.16999
8 2.66613  0.16219 0.27946  0.16219 1.88294 0.51359  0.27946  0.51359  0.82372
9 5.70345  0.83284 0.20853  0.83284 1.63801 0.14386  0.20853  0.14386  0.63115
10 10.21184 0.54180  0.81767  0.54180  0.48026 -0.09692 0.81767 -0.09692 0.85543
11 5.21407  1.19448  -0.01019 1.19448  1.36582 -0.20211 -0.01019 -0.20211 0.74703
12 2.36000  -0.43249 0.10231 -0.43249 3.86169 -0.17606 0.10231 -0.17606 2.38827
13 5.41258  -1.40562 0.37882  -1.40562 6.76309 -0.11885 0.37882 -0.11885 0.65632
14 8.40056  -1.28205 0.01435 -1.28205 6.29284 -0.77092 0.01435 -0.77092 2.57933
15 17.56383 -1.55132 -1.85050 -1.55132 2.47527 -0.28031 -1.85050 -0.28031 2.33656
16 11.09392 -0.32074 0.96195 -0.32074 1.62217 0.53679  0.96195  0.53679  2.16566
17 9.39402  0.26910 0.66831  0.26910 0.92324 -0.31938 0.66831  -0.31938 1.15230
18 10.80942 1.73403  -1.97725 1.73403  1.40466 -0.25635 -1.97725 -0.25635 1.48582
19 4.42357 097871  -0.23943 0.97871  1.20148 -0.03388 -0.23943 -0.03388 0.92386
20 11.54245 6.21399  -1.55747 6.21399  8.15980 -1.01520 -1.55747 -1.01520 1.18590

Table 2: The 9 elements of the 3 x 3 covariance matrices corresponding to the 20 landmarks (rows) of the Apodemus
mouse data with 85 samples (5-component model); see Fig. 7.

about the vertical and horizontal axes. These degrees of freedom now generate additional associated biases in
covariance estimation when using the residuals observed following Likelihood based model alignment. This bias
can be corrected using the method used previously, based upon the associated linearised parameter vectors.

Tests with representative data have shown that the 3D version of the analysis software replicates the statistical
behaviour of the previous 2D methods. In particular, the estimation of anisotropic error covariances is demonstrated
to be unbiased and within the sampling limits of accuracy expected, once outlier have been identified and removed.

In addition, this data set indicates that the upper bound of 3D landmark repeatability for 3D mandible data is
generally between 3-5 pixels, and also that outlier datasets may be present following even careful manual mark-up
at the level of 2-3%. Our analysis approach provides the ideal mechanism for not only quantifying the repeatability
of mark-up methodology (either manual or automatic) but also identifying possible outlier data. Removal of such
data would be expected to improve the stability of subsequent linear models (as illustrated here using Monte-Carlo).

The methods described in this document will be made available via the automatic 3D landmarking tool, as a
system for quality assessment and validation of output data.



