| NIiAC
THE UINIVERSITY I
af MANCHESTER . -

Introduction to Genetic Algorithms

Dr. Paul A. Bromiley
Imaging Science and Biomedical Engineering

Overview

e Optimisation methods and robustness
e Simple three-operator GAs:

— reproduction
— Crossover

— mutation
e Why GAs work: schemata and building blocks
e Problems:

— premature convergence
— genetic drift

— diversity preservation
e Multi-objective GAs

Optimisation Methods

e One aim: robustness
— efficient + effective over many problems

e T'wo types of optima: local and global

0

— T T —— —T— T —
\ / \ f(x) 7/
0.1 F \ / \ /A
\ / \ //
\\ ”/'
-0.2
03 \\ /
\ / /
-04
-05
-0.6
07 F

-0.8 -

-09

-1

1 1 1 1
0 2 4 6 8 10

e Three types of algorithm

— calculus-based
— enumerative
—random

Calculus-Based Methods

e [irst derivative discrete: set equal to zero

f(z) =2’
V) _ oy — 020
dx

e First derivative available at any point: hill-climb
(many methods)

— assumes meaningful derivatives (smoothness)
—local

e Not robust (effectiveness)

Enumerative Methods

e Discretise the search space and test every point
—not efficient

e Not robust (efficiency)

Random Methods

e True random methods e.g. random search
—no better than enumerative methods
e Randomised methods e.g. simulated annealing

— Boltzmann equation

E
P = cap(~)

— start with random state: energy = cost
—random change with probability
(Fo — El))

kT
— decease temperature: annealing schedule
—solves TSP but AS problem dependent

e Randomised methods # random search

p = exp(—

e Not robust (effectiveness)

Genetic Algorithms

e None of the previous methods are robust:

— assume smoothness / local
— inefficient
— problem specific

e Nature optimises by evolution: cost function

— discontinuous

— multi-modal

— high-dimensional
— dynamic

e Copy evolution: Genetic Algorithms

— investigate natural evolution
— produce robust optimisation method

Genetic Algorithms: Outline

e Code parameters as a binary string
— bit = gene
—value (0,1) = allele

— string = chromosome
e Create random population (typically ~ 100)
e Apply three operators:

— reproduction
— Crossover
— mutation

Genetic Algorithms: Example

e Fixample: optimise x

over x=0 to 31

e Code parameters as five bit unsigned integer
—x=0 at 00000, x=31 at 11111

e Population=4

String X Fitness f(x)
01101 13 169

11000 24 576

01000 8 64

10011 19 361

e Average fitness = 293 : Max fitness = 576

Genetic Algorithms: Example 2

e Reproduction
— copy strings with prob. f1/f
e Roulette wheel selection

— choose strings to copy at random, weighted by
their proportional fitness:

String|x | f(x) f]% Expected | Actual
count count
0110113 |169 [0.14 |0.58 1
11000124 576 |0.491.97 2
01000 |8 64 |0.06(0.22 0
10011119 361 |0.311.23 1

e Note that RWS is noisy

10

Genetic Algorithms: Example 3

e Crossover

—randomly pair the strings

—randomly select a position and swap ends

MP Mate | Crossover | New x | f(x)
site pop

0110—1 |2 4 01100 |12 |144

1100—0 |1 4 11001 |25 625

11—000 |4 2 11011 |27 | 729

10—011 |3 2 10000 |16 |256

Average fitness = 439: Max fitness = 729

e Mutation: flip bits at random

— very low probability

11

Schemata,

e Why does this work?

Initial pop Final pop
01101 01100
11000 11001
01000 11011
10011 10000

— sub-string 11*** confers high fitness

e Template = schema (pl. schemata)

— 3! possible schemata for string length |
— single string contains 2! schemata

— population of size n contains from ol to n2!
schemata, depending on diversity:.

e Schemata have two important properties:

—order o(H)
— defining length §(H)
ec.g. H=1"*0*: o(H)=2, 6(H) =3

12

Schemata 2: Reproduction

e m examples of schema H at time t

o f(H) = average fitness of strings containing H

m(H. t4+1) = m(H.)0) g D
= fj /
o If H retains fitness cf
m(H. t+1) = m(H, 1) +fcf — (1+c)m(H, 1)

m(H,t) = m(H,0)(1+ ¢)*

e Above (below) average schemata grow (decline)
exponentially in proportion to the ratio of their
fitness to the population average

13

Schemata 3: Crossover and Mutation

e Crossover may disrupt a schema if the crossover
site falls within the schema
—there are d(h) such sites
—there are (I — 1) possible sites
— apply crossover with probability p.
— probability of survival is:

ps > 1— pc(?(fll)>

e Mutation may disrupt a schema if a defined bit
1s flipped

— there are o(H) defined bits

—each is flipped with probability py,.
— probability of survival is:

(1—pm)0(H> ~ (1—o(H))pm for pm <<1

14

Schemata 4: The Fundamental Theorem of
Genetic Algorithms

e Collecting terms gives

it e41) 2 (0T o H)

Fundamental Theorem of Genetic Algorithms

e Above average fitness, low-order, short defining
length schemata grow exponentially

e Call these schemata building blocks

e [s this a good thing? k-armed bandit problem
(Holland, 1975)

15

How Many Schemata are Usetully Processed?
e How many survive crossover with probability ps
i.e. error rate € < (1 — pg)?
0(H)

Ps = _7l—1

ls <ell—1)+1
where 6(H) = ls — 1.
e Number of schemata of length [or less:
20D — 15 +1)

— pick population size of n = ols/2. <1 of each
schema of length /2 or more.

— half shorter, halt longer: pick longer halt
n(l—ls+1)2% (1—1s+1)n’

- 4 Bl 4

e O(n?): many more schemata than strings are
processed: implicit parallelism

Ns

16

Schemata as Hyperplanes

e A schema represents a hyperplane in the search
space:
001

$x] Plane

s

010

100

17

Codings
e Most important factor

e Coding should generate as many building blocks
as possible

— minimum cardinality alphabet = binary

e Coding should allow effective manipulation of
building blocks

— building blocks should be relevant to problem
and relatively independent

18

Gray Codes
e Notable coding: Gray codes

Integer Binary Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

— Adjacent integers differ by a single bit

e Holstien, 1971: Gray Codes

e Janikow and Michalewicz, 1991; Wright, 1991:
real-valued

e Optimal coding problem dependent

19

Premature Convergence

e Simple example: f(z) = (z/c)'

—range x = 0 to 1: 30-bit binary encoding
—pm = 0.03, p. = 0.6, n = 30 (De Jong, 1975)
1 -

0.8}
0.6
0.4

0.2 f

1 2 3 + 5 6 7

Fitness vs. Generation

e Approaches optimum, but does not reach it

— population is degenerate by generation 7
— diversity loss

— premature convergence

20

Sources of Diversity Loss

e Selection noise

— De Jong (1975): schemata fitness from finite
sample, stochastic errors in roulette wheel

e Selection pressure
— lower fitness schemata eliminated
e Operator disruption

— crossover and mutation destroy schemata

21

Sources of Diversity Loss: Selection Noise

0

' ' - L)
-0.1
02k
03k
0.4
05 -
-0.6
o7k
08 |
-0.9

-1 ! ! !
2 4 6 8

0

e Multi-modal functions

— gambler’s ruin

— selection noise will eliminate one peak

22

Sources of Diversity Loss: Selection Pressure

e Broad local peak, narrow global peak

—schemata near global peak get eliminated
— global peak never found (deceptive function)

e Less-fit schemata eliminated, even if they
provide partial solutions for global optima

— super-fit individuals

23

10

Sources of Diversity Loss: Operator Disruption

no11l 11000

F(X)

noo0o 11111

e Crossover between individuals optimising
different local optima is unhelpful.

24

Diversity Preservation

e Most GA research focuses on diversity
preservation

e Many schemes:

— alternative selection schemes
— fitness scaling

— crowding and preselection
—niching and speciation

— mating restriction

25

Alternative Selection Schemes

e From the simple example:

String Expected |Actual
count count
01101 0.58 1
11000 1.97 2
01000 0.22 0
10011 1.23 1

e De Jong (1975): variance of roulette wheel is
main source of allele loss

e Fixpected value model:

— calculate offspring count as usual I

f

—reduce by 0.5 every time string is selected
— if offspring count < 0, string is never selected

— total offspring < —f]% +1

— influence of super-fit individuals reduced

26

Fitness scaling

e Start: few super-fit individuals dominate

e Eind: all individuals roughly same fitness:
random search

e Fitness scaling: control this competition
e [l.g. linear: scale fitness so that

_fc,wg — fcwg

_ f7,nagc — Cmfcwg
—Cm =12 to 2forn =50 to 100

e Level of competition fixed
e Other scaling functions:
—slgma
— power law
—review: Forrest (1985)

27

Crowding and preselection

Generational GA:

- replace whole population at each iteration
Steady-state GA:

- replace only a portion of the population

e Preselection:

— Cavicchio, 1970
— fit offspring replace their own parents

e Crowding:

— De Jong, 1975
— crowding: offspring replace similar
individuals from subset of population
—similarity: bitwise distance in Hamming space
e compare to speciation in natural evolution

e Mahfoud (1992): stochastic errors still lead to
diversity loss

28

Niching and Speciation

e Crowding and preselection examples of niching:

— 1mpose competition between like individuals
— generate species on each local optimum

e [itness sharing

— Goldberg and Richardson (1987)
— 1mpose competition directly
— fitness scaled by

Folws) = /(i)

2ty s(d(wg,)

—d = distance, s = sharing function

e Example: triangular sharing function

29

Niching and Speciation 2
e Results from Goldberg and Richardson

1
08 ¢
0.6 ¢

04t

Generation 100: no mutation, no sharing

1
0.8
0.6 r

04 r

Generation 100: no mutation, sharing

30

Mating Restriction

e Impose niching by restricting mating
e Hollstien (1971)
— traditional farming practises

e Line-breeding: champion individual repeatedly
bred with others

— good for unimodal cost functions
e Inbreeding with intermittent cross-breeding

— close individuals mate if fitness goes up
— 1f not, mate outside family

— improvement for multi-modal functions

31

Multi-objective Optimisation

H
(=) [.a] [
=@
o
o]

pL
@

e D, E: dominated solutions
e A, B, C: non-dominated solutions
e Non-dominated solutions form the Pareto Front

e GAs ideal:

— multiple individuals in population
—entire Pareto Front in a single run
— diversity must be preserved

32

Conclusions

e GAs implementation

— code parameters as binary string
— Initialise multiple random strings

— reproduction, crossover and mutation
e GA theory

—schemata
— Fundamental Theorem of Genetic Algorithms
— implicit parallelism
e GA problems
— selection noise, selection pressure,
operator disruption
— loss of diversity
— hence diversity preservation methods

e GA advantages

—robust
— multi-objective optimisation
—suitable for parallel architectures

33

